Search results for "BANACH SPACE"

showing 10 items of 281 documents

Stability of impulsive differential systems

2013

The asymptotic phase property and reduction principle for stability of a trivial solution is generalized to the case of the noninvertible impulsive differential equations in Banach spaces whose linear parts split into two parts and satisfy the condition of separation.

Article SubjectDifferential equationlcsh:MathematicsApplied MathematicsMathematical analysisPhase (waves)Banach spacelcsh:QA1-939Differential systemsStability (probability)Trivial solution:MATHEMATICS::Applied mathematics [Research Subject Categories]Reduction (mathematics)AnalysisMathematics
researchProduct

A Dirichlet problem for the Laplace operator in a domain with a small hole close to the boundary

2016

We study the Dirichlet problem in a domain with a small hole close to the boundary. To do so, for each pair $\boldsymbol\varepsilon = (\varepsilon_1, \varepsilon_2 )$ of positive parameters, we consider a perforated domain $\Omega_{\boldsymbol\varepsilon}$ obtained by making a small hole of size $\varepsilon_1 \varepsilon_2 $ in an open regular subset $\Omega$ of $\mathbb{R}^n$ at distance $\varepsilon_1$ from the boundary $\partial\Omega$. As $\varepsilon_1 \to 0$, the perforation shrinks to a point and, at the same time, approaches the boundary. When $\boldsymbol\varepsilon \to (0,0)$, the size of the hole shrinks at a faster rate than its approach to the boundary. We denote by $u_{\bolds…

Asymptotic analysisGeneral MathematicsBoundary (topology)Asymptotic expansion01 natural sciences35J25; 31B10; 45A05; 35B25; 35C20Mathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mathematics (all)Mathematics - Numerical Analysis0101 mathematicsMathematicsDirichlet problemLaplace's equationDirichlet problemAnalytic continuationApplied Mathematics010102 general mathematicsMathematical analysisHigh Energy Physics::PhenomenologyReal analytic continuation in Banach spaceNumerical Analysis (math.NA)Physics::Classical Physics010101 applied mathematicsasymptotic analysisLaplace operatorPhysics::Space PhysicsAsymptotic expansion; Dirichlet problem; Laplace operator; Real analytic continuation in Banach space; Singularly perturbed perforated domain; Mathematics (all); Applied MathematicsAsymptotic expansionLaplace operator[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]Singularly perturbed perforated domainAnalytic functionAnalysis of PDEs (math.AP)Asymptotic expansion; Dirichlet problem; Laplace operator; Real analytic continuation in Banach space; Singularly perturbed perforated domain;
researchProduct

Solution of an initial-value problem for parabolic equations via monotone operator methods

2014

We study a general initial-value problem for parabolic equations in Banach spaces, by using a monotone operator method. We provide sufficient conditions for the existence of solution to such problem.

Banach spacemetric spacesparabolic equationlcsh:Mathematicsmetric spaceMathematicsofComputing_NUMERICALANALYSISparabolic equationstransitive relationslcsh:QA1-939Banach spacestransitive relations.Settore MAT/05 - Analisi Matematicamonotone operatormonotone operatorsElectronic Journal of Differential Equations
researchProduct

MR3098564 Reviewed Al-Thagafi, M. A.; Shahzad, Naseer Krasnosel'skii-type fixed-point results. J. Nonlinear Convex Anal. 14 (2013), no. 3, 483–491. (…

2014

The Krasnosel'skii fixed-point theorem is a powerful tool in dealing with various types of integro-differential equations. The initial motivation of this theorem is the fact that the inversion of a perturbed differential operator may yield the sum of a continuous compact mapping and a contraction mapping. Following and improving this idea, many fixed-point results were proved.\\ The authors present significant and interesting contributions in this direction. In particular, they give the following main theorem: \begin{theorem} Let $M$ be a nonempty bounded closed convex subset of a Banach space $E$, $S:M \to E$ and $T:M \to E$. Suppose that \begin{itemize} \item[(a)] $S$ is 1-set-contractive…

Banach spacenonlinear integral equation with delaySettore MAT/05 - Analisi MatematicaKrasnosel'skii fixed-point theorem
researchProduct

MR2986428 Lebedev, Leonid P.(CL-UNC); Vorovich, Iosif I.; Cloud, Michael J. Functional analysis in mechanics. Second edition. Springer Monographs in …

2014

Banach spaces Hilbert spaces bounded operators.Settore MAT/05 - Analisi Matematica
researchProduct

Absolutely summing operators on C[0,1] as a tree space and the bounded approximation property

AbstractLet X be a Banach space. For describing the space P(C[0,1],X) of absolutely summing operators from C[0,1] to X in terms of the space X itself, we construct a tree space ℓ1tree(X) on X. It consists of special trees in X which we call two-trunk trees. We prove that P(C[0,1],X) is isometrically isomorphic to ℓ1tree(X). As an application, we characterize the bounded approximation property (BAP) and the weak BAP in terms of X∗-valued sequence spaces.

Banach spacesAbsolutely summing operatorsTwo-trunk treesContinuous functions on [01]Linear B-splinesBounded approximation propertiesJournal of Functional Analysis
researchProduct

Bergman and Bloch spaces of vector-valued functions

2003

We investigate Bergman and Bloch spaces of analytic vector-valued functions in the unit disc. We show how the Bergman projection from the Bochner-Lebesgue space Lp(, X) onto the Bergman space Bp(X) extends boundedly to the space of vector-valued measures of bounded p-variation Vp(X), using this fact to prove that the dual of Bp(X) is Bp(X*) for any complex Banach space X and 1 < p < ∞. As for p = 1 the dual is the Bloch space ℬ(X*). Furthermore we relate these spaces (via the Bergman kernel) with the classes of p-summing and positive p-summing operators, and we show in the same framework that Bp(X) is always complemented in p(X). (© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Bloch spacePure mathematicsBergman spaceGeneral MathematicsBounded functionMathematical analysisBanach spaceInterpolation spaceSpace (mathematics)Bergman kernelReproducing kernel Hilbert spaceMathematicsMathematische Nachrichten
researchProduct

The validity of the “liminf” formula and a characterization of Asplund spaces

2014

Abstract We show that for a given bornology β on a Banach space X the following “ lim inf ” formula lim inf x ′ ⟶ C x T β ( C ; x ′ ) ⊂ T c ( C ; x ) holds true for every closed set C ⊂ X and any x ∈ C , provided that the space X × X is ∂ β -trusted. Here T β ( C ; x ) and T c ( C ; x ) denote the β-tangent cone and the Clarke tangent cone to C at x. The trustworthiness includes spaces with an equivalent β-differentiable norm or more generally with a Lipschitz β-differentiable bump function. As a consequence, we show that for the Frechet bornology, this “ lim inf ” formula characterizes in fact the Asplund property of X. We use our results to obtain new characterizations of T β -pseudoconve…

Bump functionCombinatoricsClosed setApplied MathematicsPseudoconvexityMathematical analysisTangent coneBanach spaceSubderivativeLipschitz continuityAnalysisMathematicsAsplund spaceJournal of Mathematical Analysis and Applications
researchProduct

INTEGRAL SOLUTIONS TO A CLASS OF NONLOCAL EVOLUTION EQUATIONS

2010

We study the existence of integral solutions to a class of nonlinear evolution equations of the form [Formula: see text] where A : D(A) ⊆ X → 2X is an m-accretive operator on a Banach space X, and f : [0, T] × X → X and [Formula: see text] are given functions. We obtain sufficient conditions for this problem to have a unique integral solution.

Cauchy problemClass (set theory)Pure mathematicsApplied MathematicsGeneral MathematicsOperator (physics)Mathematical analysisBanach spaceIntegral solutionFixed pointNonlinear evolutionFourier integral operatorMathematicsCommunications in Contemporary Mathematics
researchProduct

Existence results and asymptotic behavior for nonlocal abstract Cauchy problems

2008

AbstractThe purpose of this paper is to study the existence and asymptotic behavior of solutions for Cauchy problems with nonlocal initial datum generated by accretive operators in Banach spaces.

Cauchy problemPure mathematicsm-Accretive operatorsNonlocal Cauchy problemsApplied MathematicsMathematical analysisBanach spaceMathematics::Analysis of PDEsGeodetic datumCauchy distributionIntegral solutionsAsymptotic behaviorAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct