Search results for "BST"

showing 10 items of 10311 documents

2017

Both effective population size and life history may influence the efficacy of purifying selection, but it remains unclear if the environment affects the accumulation of weakly deleterious nonsynonymous polymorphisms. We hypothesize that the reduced energetic cost of osmoregulation in brackish water habitat may cause relaxation of selective constraints at mitochondrial oxidative phosphorylation (OXPHOS) genes. To test this hypothesis, we analyzed 57 complete mitochondrial genomes of Pungitius pungitius collected from brackish and freshwater habitats. Based on inter- and intraspecific comparisons, we estimated that 84% and 68% of the nonsynonymous polymorphisms in the freshwater and brackish …

0106 biological sciences0301 basic medicineNonsynonymous substitutionGeneticseducation.field_of_studyMitochondrial DNAEcologyPopulationEuryhalineBiologybiology.organism_classification010603 evolutionary biology01 natural sciencesGenetic load03 medical and health sciencesNegative selection030104 developmental biologyPungitiusEffective population size14. Life underwatereducationEcology Evolution Behavior and SystematicsNature and Landscape ConservationEcology and Evolution
researchProduct

Fungal spore diversity reflects substrate-specific deposition challenges

2018

AbstractSexual spores are important for the dispersal and population dynamics of fungi. They show remarkable morphological diversity, but the underlying forces driving spore evolution are poorly known. We investigated whether trophic status and substrate associations are associated with morphology in 787 macrofungal genera. We show that both spore size and ornamentation are associated with trophic specialization, so that large and ornamented spores are more probable in ectomycorrhizal than in saprotrophic genera. This suggests that spore ornamentation facilitates attachment to arthropod vectors, which ectomycorrhizal species may need to reach lower soil layers. Elongated spore shapes are mo…

0106 biological sciences0301 basic medicinePopulationPopulation Dynamicslcsh:MedicineMorphology (biology)Biology010603 evolutionary biology01 natural sciencesArticle03 medical and health sciencesmorfologiaAscomycotaMycorrhizaelcsh:ScienceeducationSoil MicrobiologyTrophic levelitiöteducation.field_of_studyMultidisciplinaryEcologyBasidiomycotalcsh:Rfungisubstrate-specific deposition challengesSpores FungalSubstrate (marine biology)Spore030104 developmental biologyTaxonBiological dispersalfungal spore diversitylcsh:QsienetSoil microbiologyleviäminen
researchProduct

Inter- and intra-specific genomic divergence in Drosophila montana shows evidence for cold adaptation

2018

This work was supported by the Academy of Finland to AH (projects 132619 and 267244) and to MK (projects 268214 and 272927) and NERC (UK) funding to MGR (grants NE/E015255/1 and NE/J020818/1) and PhD studentship to DJP (NE/I528634/1). The genomes of species that are ecological specialists will likely contain signatures of genomic adaptation to their niche. However, distinguishing genes related to ecological specialism from other sources of selection and more random changes is a challenge. Here we describe the genome of Drosophila montana, which is the most extremely cold-adapted Drosophila species. We use branch tests to identify genes showing accelerated divergence in contrasts between col…

0106 biological sciences0301 basic medicineQH301 BiologyAcclimatizationGenome Insectcomparative genomics01 natural sciencesGenomekylmänkestävyysDrosophilia montanaPhylogenysopeutuminen0303 health scienceseducation.field_of_studybiologygenomiikkaCold TemperatureDrosophilaSynonymous substitutionResearch ArticlemahlakärpäsetNichePopulationGenomics010603 evolutionary biologyIntraspecific competitionQH30103 medical and health sciencesecological adaptationPhylogeneticsDrosophila montanaGeneticsAnimalsDrosophila (subgenus)educationGeneEcology Evolution Behavior and Systematics030304 developmental biologyComparative genomicsta1184DASMolecular Sequence Annotationcold tolerancebiology.organism_classificationDiapauseAcclimatization; Animals; Cold Temperature; Diapause; Drosophila/classification; Drosophila/genetics; Drosophila/physiology; Genome Insect; Molecular Sequence Annotation; Phylogeny030104 developmental biologyEvolutionary biologyta1181Adaptation
researchProduct

Characterization and purification of a bacterial chlorogenic acid esterase detected during the extraction of chlorogenic acid from arbuscular mycorrh…

2016

International audience; A Gram-negative bacterium able to grow using chlorogenic acid (5-caffeoylquinic acid) as sole carbon source has been isolated from the roots of tomato plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. An intracellular esterase exhibiting very high affinity (K-m = 2 mu M) for chlorogenic acid has been extracted and purified by FPLC from the chlorogenate-grown cultures of this bacterium. The molecular mass of the purified esterase determined by SDS-PAGE was 61 kDa and its isoelectric point determined by chromatofocusing was 7.75. The esterase hydrolysed chlorogenic acid analogues (caffeoylshikimate, and the 4- and 3-caffeoylquinic acid i…

0106 biological sciences0301 basic medicineRhizophagus irregularisCoumaric AcidsPhysiologyRoot-associated bacteria[SDV]Life Sciences [q-bio]Arbuscular mycorrhizal fungiPlant ScienceBiologyCoumaric acidRoot exudates01 natural sciencesEsterasePlant RootsProtocatechuic acidSubstrate SpecificityFerulic acid03 medical and health scienceschemistry.chemical_compoundHydrolysisChlorogenic acidBacterial ProteinsSolanum lycopersicumMycorrhizaeGeneticsMethyl caffeate[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyBacteriaEthanolMethanolChlorogenic acidbiology.organism_classification6. Clean waterChlorogenase030104 developmental biologychemistryBiochemistry[SDE]Environmental SciencesCarboxylic Ester Hydrolases010606 plant biology & botany
researchProduct

Glycolipid Biosurfactant Production from Waste Cooking Oils by Yeast: Review of Substrates, Producers and Products

2021

Biosurfactants are a microbially synthesized alternative to synthetic surfactants, one of the most important bulk chemicals. Some yeast species are proven to be exceptional biosurfactant producers, while others are emerging producers. A set of factors affects the type, amount, and properties of the biosurfactant produced, as well as the environmental impact and costs of biosurfactant’s production. Exploring waste cooking oil as a substrate for biosurfactants’ production serves as an effective cost-cutting strategy, yet it has some limitations. This review explores the existing knowledge on utilizing waste cooking oil as a feedstock to produce glycolipid biosurfactants by yeast. The review f…

0106 biological sciences0301 basic medicineTP500-660Cooking oilChemistryCommodity chemicalsFermentation industries. Beverages. Alcoholcircular economyPlant Sciencemicrobial surfactantsSubstrate (biology)Raw materialPulp and paper industry01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)Yeastwaste valorization03 medical and health sciences030104 developmental biologyGlycolipidused cooking oil010608 biotechnologynonconventional yeastsFood ScienceFermentation
researchProduct

2020

DnaK3, a highly conserved cyanobacterial chaperone of the Hsp70 family, binds to cyanobacterial thylakoid membranes, and an involvement of DnaK3 in the biogenesis of thylakoid membranes has been suggested. As shown here, light triggers synthesis of DnaK3 in the cyanobacterium Synechocystis sp. PCC 6803, which links DnaK3 to the biogenesis of thylakoid membranes and to photosynthetic processes. In a DnaK3 depleted strain, the photosystem content is reduced and the photosystem II activity is impaired, whereas photosystem I is regular active. An impact of DnaK3 on the activity of other thylakoid membrane complexes involved in electron transfer is indicated. In conclusion, DnaK3 is a versatile …

0106 biological sciences0301 basic medicinebiologyPhotosystem IIChemistryfood and beveragesPaleontologymacromolecular substancesPhotosynthesisPhotosystem I01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyChloroplast03 medical and health sciences030104 developmental biologySpace and Planetary ScienceChaperone (protein)Thylakoidpolycyclic compoundsbiology.proteinBiophysicsEcology Evolution Behavior and SystematicsBiogenesis010606 plant biology & botanyPhotosystemLife
researchProduct

Methanotrophs are core members of the diazotroph community in decaying Norway spruce logs

2018

Dead wood is initially a nitrogen (N) poor substrate, where the N content increases with decay, partly due to biological N2 fixation, but the drivers of the N accumulation are poorly known. We quantified the rate of N2 fixation in decaying Norway spruce logs of different decay stages and studied the potential regulators of the N2-fixation activity. The average rate for acetylene reduction in the decaying wood was 7.5 nmol ethylene g−1d−1, which corresponds to 52.9 μg N kg−1d−1. The number of nifH copies (g−1 dry matter) was higher at the later decay stages, but no correlation between the copy number and the in vitro N2 fixation rate was found. All recovered nifH sequences were assigned to t…

0106 biological sciences0301 basic medicineta1172Soil Sciencechemistry.chemical_element010603 evolutionary biology01 natural sciencesMicrobiologyMethane03 medical and health scienceschemistry.chemical_compoundlahoaminenBotanyDry matterlahopuutritsobitdead woodnifHbiologyPicea abiesChemistryta1183coarse woody debrisPicea abiesbiology.organism_classificationNitrogenSubstrate (marine biology)kuusi030104 developmental biologytypensidontaasymbiotic nitrogen fixationNitrogen fixationDiazotrophCoarse woody debrisSoil Biology and Biochemistry
researchProduct

Monitoring of transglutaminase crosslinking reaction by 1H NMR spectroscopy on model substrates

2015

International audience; A new method based on 1H NMR spectroscopy was developed for monitoring transglutaminase crosslinking reaction with model molecules (CBZ-Gln-Gly and N-α-acetyl-lysine). The transglutaminase reaction led to the appearance of new resonances on NMR spectrum as well as significant decrease in others. The new observed resonances, originated from newly formed ɛ-(γ-glutamyl)lysine isopeptide bonds, evidence the enzymatic reaction and allow to quantify the ɛ-(γ-glutamyl)lysine fragment. Moreover, the decrease in resonance intensity, originated from lysine, permit to determine the crosslinking degree. These results obtained by 1H NMR spectroscopy can be used as an alternative …

0106 biological sciences1h nmr spectroscopyTissue transglutaminaseLysineCrosslinking degreePhotochemistrycomplex mixtures01 natural sciences03 medical and health sciencesModel substratesɛ-(γ-glutamyl)-lysineColloid and Surface ChemistryLiquid chromatography–mass spectrometry010608 biotechnologyOrganic chemistryMolecule[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology030304 developmental biologyAlternative methods0303 health sciencesbiologyChemistryResonanceNuclear magnetic resonance spectroscopyMicrobial transglutaminasebiology.proteinColloids and Surfaces A: Physicochemical and Engineering Aspects
researchProduct

Aspartic Proteinase from Barley Seeds is Related to Animal Cathepsin D

1991

In contrast to the well-characterized mammalian aspartic proteinases, plant aspartic proteinases have received little attention so far. Aspartic proteinase activity has been detected, for example, in resting seeds of scots pine (Salmia et al., 1978), soybean (Bond & Bowles, 1983), barley and wheat (Morris et al., 1985) as well as in leaves of orange (Garcia-Martinez & Moreno, 1986) and barley (Kervinen et al., 1990). Aspartic proteinases have been purified from the seeds of rice (Doi et al., 1980), cucumber, squash (Polanowski et al 1985) and wheat (Dunaevsky et al., 1989) as well as from the leaves of tomato (Rodrigo et al., 1989). The plant aspartic proteinases have been reported to enhan…

0106 biological sciences2. Zero hungerchemistry.chemical_classification0303 health sciencesAspartic Proteinasesendocrine system diseasesfunginutritional and metabolic diseasesfood and beveragesCathepsin DOrange (colour)01 natural sciences03 medical and health sciencesHydrolysisBiochemistryCathepsin OchemistryProteinase activityStorage proteinhormones hormone substitutes and hormone antagonists030304 developmental biology010606 plant biology & botanySquash
researchProduct

Granulation and microbial community dynamics in the chitosan-supplemented anaerobic treatment of wastewater polluted with organic solvents.

2018

Abstract The effect of chitosan on the development of granular sludge in upflow anaerobic sludge blanket reactors (UASB) when treating wastewater polluted with the organic solvents ethanol, ethyl acetate, and 1-ethoxy-2-propanol was evaluated. Three UASB reactors were operated for 219 days at ambient temperature with an organic loading rate (OLR) of between 0.3 kg COD m −3 d −1 and 20 kg COD m −3 d −1 . One reactor was operated without the addition of chitosan, while the other two were operated with the addition of chitosan doses of 2.4 mg gVSS −1 two times. The three reactors were all able to treat the OLR tested with COD removal efficiencies greater than 90%. However, the time required to…

0106 biological sciencesAigua ContaminacióEnvironmental EngineeringPolymersEthyl acetate010501 environmental sciencesWastewater01 natural sciencesWaste Disposal FluidMethanosaetaMethanomicrobialesChitosanchemistry.chemical_compoundGranulationExtracellular polymeric substanceBioreactors010608 biotechnologyAnaerobiosisParticle SizeWaste Management and Disposal0105 earth and related environmental sciencesWater Science and TechnologyCivil and Structural EngineeringBiological Oxygen Demand AnalysisChitosanbiologySewageEcological ModelingMicrobiotaGranule (cell biology)biology.organism_classificationPulp and paper industryPollutionMethanogenchemistryWastewaterSolventsAigua MicrobiologiaGeobacterWater Pollutants ChemicalWater research
researchProduct