Search results for "BVAR"

showing 10 items of 16 documents

Varieties of algebras with pseudoinvolution and polynomial growth

2017

Let A be an associative algebra with pseudoinvolution (Formula presented.) over an algebraically closed field of characteristic zero and let (Formula presented.) be its sequence of (Formula presented.) -codimensions. We shall prove that such a sequence is polynomially bounded if and only if the variety generated by A does not contain five explicitly described algebras with pseudoinvolution. As a consequence, we shall classify the varieties of algebras with pseudoinvolution of almost polynomial growth, i.e. varieties of exponential growth such that any proper subvariety has polynomial growth and, along the way, we shall give also the classification of their subvarieties. Finally, we shall de…

16R50; 16W50; growth; Polynomial identity; Primary: 16R10; pseudoinvolution; Secondary: 16W10Linear function (calculus)PolynomialPure mathematicspseudoinvolutionAlgebra and Number TheorySubvariety16R50growth010102 general mathematicsPolynomial identity pseudo involution codimension growthZero (complex analysis)010103 numerical & computational mathematicsPolynomial identity01 natural sciencesPrimary: 16R10Settore MAT/02 - AlgebraBounded functionAssociative algebra0101 mathematicsAlgebraically closed fieldVariety (universal algebra)16W50Secondary: 16W10MathematicsLinear and Multilinear Algebra
researchProduct

The Coble Quadric

2023

Given a smooth genus three curve $C$, the moduli space of rank two stable vector bundles on C with trivial determinant embeds in $\mathbb{P}^8$ as a hypersurface whose singular locus is the Kummer threefold of $C$; this hypersurface is the Coble quartic. Gruson, Sam and Weyman realized that this quartic could be constructed from a general skew-symmetric fourform in eight variables. Using the lines contained in the quartic, we prove that a similar construction allows to recover SU$_C(2, L)$, the moduli space of rank two stable vector bundles on C with fixed determinant of odd degree L, as a subvariety of $G(2, 8)$. In fact, each point $p \in C$ defines a natural embedding of SU$_C(2, \mathca…

Coble hypersurfacesMathematics - Algebraic Geometrydegeneracy loci[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]FOS: Mathematics14h60 22E46Moduli spaces of stable bundlessubvarieties of Grassmannians[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Hecke linesself-dual hypersurfacesAlgebraic Geometry (math.AG)
researchProduct

Subvarieties of the Varieties Generated by the SuperalgebraM1, 1(E) orM2(𝒦)

2003

Abstract Let 𝒦 be a field of characteristic zero, and let us consider the matrix algebra M 2(𝒦) endowed with the ℤ2-grading (𝒦e 11 ⊕ 𝒦e 22) ⊕ (𝒦e 12 ⊕ 𝒦e 21). We define two superalgebras, ℛ p and 𝒮 q , where p and q are positive integers. We show that if 𝒰 is a proper subvariety of the variety generated by the superalgebra M 2(𝒦), then the even-proper part of the T 2-ideal of graded polynomial identities of 𝒰 asymptotically coincides with the even-proper part of the graded polynomial identities of the variety generated by the superalgebra ℛ p  ⊕ 𝒮 q . This description also affords an even-asymptotic desc…

Discrete mathematicsCombinatoricsPolynomialAlgebra and Number TheorySubvarietyMatrix algebraZero (complex analysis)Field (mathematics)Variety (universal algebra)SuperalgebraMathematicsCommunications in Algebra
researchProduct

Polynomial codimension growth of algebras with involutions and superinvolutions

2017

Abstract Let A be an associative algebra over a field F of characteristic zero endowed with a graded involution or a superinvolution ⁎ and let c n ⁎ ( A ) be its sequence of ⁎-codimensions. In [4] , [12] it was proved that if A is finite dimensional such sequence is polynomially bounded if and only if A generates a variety not containing a finite number of ⁎-algebras: the group algebra of Z 2 and a 4-dimensional subalgebra of the 4 × 4 upper triangular matrices with suitable graded involutions or superinvolutions. In this paper we focus our attention on such algebras since they are the only finite dimensional ⁎-algebras, up to T 2 ⁎ -equivalence, generating varieties of almost polynomial gr…

Discrete mathematicsPure mathematicsAlgebra and Number TheorySubvarietySuperinvolution010102 general mathematicsSubalgebraGraded involution; Growth; Polynomial identity; SuperinvolutionTriangular matrix010103 numerical & computational mathematicsGroup algebraCodimensionPolynomial identity Graded involution Superinvolution GrowthGrowthPolynomial identity01 natural sciencesGraded involutionSettore MAT/02 - AlgebraBounded functionAssociative algebra0101 mathematicsFinite setMathematics
researchProduct

Varieties of almost polynomial growth: classifying their subvarieties

2007

Let G be the infinite dimensional Grassmann algebra over a field F of characteristic zero and UT2 the algebra of 2 x 2 upper triangular matrices over F. The relevance of these algebras in PI-theory relies on the fact that they generate the only two varieties of almost polynomial growth, i.e., they grow exponentially but any proper subvariety grows polynomially. In this paper we completely classify, up to PI-equivalence, the associative algebras A such that A is an element of Var(G) or A is an element of Var(UT2).

Discrete mathematicsPure mathematicsJordan algebraCODIMENSION GROWTHSubvarietyGeneral MathematicsTriangular matrixUniversal enveloping algebraIDENTITIESPI-ALGEBRASAlgebra representationDivision algebraCellular algebraComposition algebraT-IDEALSMathematics
researchProduct

An almost nilpotent variety of exponent 2

2013

We construct a non-associative algebra A over a field of characteristic zero with the following properties: if V is the variety generated by A, then V has exponential growth but any proper subvariety of V is nilpotent. Moreover, by studying the asymptotics of the sequence of codimensions of A we deduce that exp(V) = 2.

Discrete mathematicsPure mathematicsSequenceSubvarietyGeneral MathematicsZero (complex analysis)Field (mathematics)Variety codimensions growth.NilpotentSettore MAT/02 - AlgebraExponential growthExponentVariety (universal algebra)Mathematics
researchProduct

The effects of monetary policy on income and wealth inequality in the U.S. Exploring different channels

2020

We assess the effects of monetary policy shocks on income and wealth inequality through direct inequality measures and by analyzing several transmission channels explored in recent literature. Furthermore, we analyze two additional channels: the Housing and the Fiscal channels. The methodology adopted is a Bayesian proxy SVAR using a high-frequency identification based on the external instruments approach. Our own policy shocks are constructed for this purpose. The results show that an expansionary monetary policy shock does not have a significant effect on income inequality due to the existence of opposite channels, whereas it increases wealth inequality mainly through the portfolio channe…

Economics and EconometricsTransmission channelFundamentos del Análisis EconómicoInequalitymedia_common.quotation_subject05 social sciencesMonetary policyIncome and wealth inequality0211 other engineering and technologies02 engineering and technologyMonetary economicsHigh-frequency identificationMonetary policyEconomic inequalityProxy SVAR0502 economics and businessEconomicsPortfolio021108 energy050207 economicsmedia_commonCommunication channelBVAR
researchProduct

Polynomial growth and star-varieties

2016

Abstract Let V be a variety of associative algebras with involution over a field F of characteristic zero and let c n ⁎ ( V ) , n = 1 , 2 , … , be its ⁎-codimension sequence. Such a sequence is polynomially bounded if and only if V does not contain the commutative algebra F ⊕ F , endowed with the exchange involution, and M, a suitable 4-dimensional subalgebra of the algebra of 4 × 4 upper triangular matrices. Such algebras generate the only varieties of ⁎-algebras of almost polynomial growth, i.e., varieties of exponential growth such that any proper subvariety is polynomially bounded. In this paper we completely classify all subvarieties of the ⁎-varieties of almost polynomial growth by gi…

Involution (mathematics)Algebra and Number TheorySubvariety010102 general mathematicsSubalgebraStar-codimensionTriangular matrixStar-polynomial identitie010103 numerical & computational mathematicsGrowth01 natural sciencesCombinatoricsSettore MAT/02 - AlgebraExponential growthBounded function0101 mathematicsCommutative algebraAssociative propertyMathematics
researchProduct

Superalgebras with Involution or Superinvolution and Almost Polynomial Growth of the Codimensions

2018

Let A be a superalgebra with graded involution or superinvolution ∗ and let $c_{n}^{*}(A)$, n = 1,2,…, be its sequence of ∗-codimensions. In case A is finite dimensional, in Giambruno et al. (Algebr. Represent. Theory 19(3), 599–611 2016, Linear Multilinear Algebra 64(3), 484–501 2016) it was proved that such a sequence is polynomially bounded if and only if the variety generated by A does not contain the group algebra of $\mathbb {Z}_{2}$ and a 4-dimensional subalgebra of the 4 × 4 upper-triangular matrices with suitable graded involutions or superinvolutions. In this paper we study the general case of ∗-superalgebras satisfying a polynomial identity. As a consequence we classify the varie…

Involution (mathematics)Multilinear algebraInvolutionSubvarietySuperinvolutionGeneral Mathematics010102 general mathematicsSubalgebra0211 other engineering and technologies021107 urban & regional planning02 engineering and technologyGroup algebraGrowthGrowth; Involution; Polynomial identity; SuperinvolutionPolynomial identity01 natural sciencesSuperalgebraCombinatoricsSettore MAT/02 - AlgebraExponential growthBounded function0101 mathematicsMathematics
researchProduct

Sard property for the endpoint map on some Carnot groups

2016

In Carnot-Caratheodory or sub-Riemannian geometry, one of the major open problems is whether the conclusions of Sard's theorem holds for the endpoint map, a canonical map from an infinite-dimensional path space to the underlying finite-dimensional manifold. The set of critical values for the endpoint map is also known as abnormal set, being the set of endpoints of abnormal extremals leaving the base point. We prove that a strong version of Sard's property holds for all step-2 Carnot groups and several other classes of Lie groups endowed with left-invariant distributions. Namely, we prove that the abnormal set lies in a proper analytic subvariety. In doing so we examine several characterizat…

Mathematics - Differential Geometry0209 industrial biotechnologyPure mathematics53C17 22F50 22E25 14M17SubvarietyGroup Theory (math.GR)02 engineering and technologySard's property01 natural sciencesSet (abstract data type)020901 industrial engineering & automationAbnormal curves; Carnot groups; Endpoint map; Polarized groups; Sard's property; Sub-Riemannian geometry; Analysis; Mathematical PhysicsMathematics - Metric GeometryFOS: MathematicsPoint (geometry)Canonical mapAbnormal curves; Carnot groups Endpoint map Polarized groups Sard's property Sub-Riemannian geometry Analysis0101 mathematicsMathematics - Optimization and ControlMathematical PhysicsMathematicsApplied Mathematics010102 general mathematicsta111Polarized groupsCarnot groupLie groupEndpoint mapMetric Geometry (math.MG)Base (topology)ManifoldSub-Riemannian geometryDifferential Geometry (math.DG)Optimization and Control (math.OC)Carnot groupsAbnormal curvesMathematics - Group TheoryAnalysis
researchProduct