Search results for "Bandwidth"

showing 10 items of 250 documents

High spatiotemporal resolution in multifocal processing with femtosecond laser pulses.

2006

We report spatial and temporal dispersion compensation for fan-out of femtosecond pulses with a low-frequency diffraction grating by means of a hybrid diffractive-refractive lens triplet. In this way, we achieve a multifocal light structure with nearly diffraction-limited light spots even for 20 fs pulse duration. The spatial chromatic compensation, which drastically reduces the lateral walk-off of the various spectral components, also allows us to improve the available bandwidth at the dispersion-compensated diffraction orders. In fact, the temporal width of the output pulse is essentially limited by the group-delay dispersion term, which is shown to be small. The high spatiotemporal resol…

Femtosecond pulse shapingDiffractionMaterials sciencebusiness.industryPhysics::OpticsPulse durationLaserAtomic and Molecular Physics and Opticslaw.inventionOpticslawFemtosecondChromatic scalebusinessDiffraction gratingBandwidth-limited pulseOptics letters
researchProduct

All-fibered high-quality 1.5–2 THz femtosecond pulse sources

2009

Generation of high-quality ultra-high repetition rate optical pulse trains around 1.55µm has become increasingly interesting for many scientific applications such as optical sampling, ultra-high capacity transmission systems, component testing or nonlinear phenomena studies. Unfortunately, the current bandwidth limitations of optoelectronic devices do not enable the direct generation of pulses with repetition rate higher than 80GHz and a temporal width below a few ps.

Femtosecond pulse shapingFour-wave mixingOpticsMaterials sciencebusiness.industryTerahertz radiationFemtosecond pulseBandwidth (signal processing)OptoelectronicsTransmission systembusinessUltrashort pulseBandwidth-limited pulseCLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference
researchProduct

Fiber-based device for the detection of low-intensity fluctuations of ultrashort pulses

2012

International audience; We describe a fiber-based device that can significantly enhance the low intensity fluctuations of an ultrashort pulse train to detect them more easily than with usual direct detection systems. Taking advantage of the Raman intrapulse effect that progressively shifts the central frequency of a femtosecond pulse propagating in an anomalous dispersion fiber, a subsequent spectral filtering can efficiently increase the level of fluctuations by more than one order of magnitude. We show that attention has to be paid to maintain the shape of the statistical distribution unaffected by the nonlinear process.

Femtosecond pulse shapingMaterials science02 engineering and technologySpectrum Analysis Raman01 natural sciences010309 opticssymbols.namesake020210 optoelectronics & photonicsOpticsMultiphoton intrapulse interference phase scan0103 physical sciences0202 electrical engineering electronic engineering information engineeringFiberElectrical and Electronic EngineeringSelf-phase modulationEngineering (miscellaneous)[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryOptical DevicesEquipment DesignAtomic and Molecular Physics and OpticssymbolsbusinessUltrashort pulseBandwidth-limited pulseRaman scatteringPhotonic-crystal fiber
researchProduct

Pulse trains produced by phase-modulation of ultrashort optical pulses: tailoring and characterization

2009

1094-4087; In this paper, creation of pulse doublets and pulse trains by spectral phase modulation of ultrashort optical pulses is investigated. Pulse doublets with specific features are generated through step-like and triangular spectral phase modulation, whereas sequences of pulses with controllable delay and amplitude are produced via sinusoidal phase modulations. A temporal analysis of this type of tailored pulses is exposed and a complete characterization with the SPIDER technique (Spectral Phase Interferometry for Direct Electric-field Reconstruction) is presented. (C) 2004 Optical Society of America.

Femtosecond pulse shapingMaterials scienceFrequency-resolved optical gatingCOHERENT QUANTUM CONTROLFEEDBACKbusiness.industrySpectral phase interferometry for direct electric-field reconstructionFREQUENCY01 natural sciencesPulse shapingAtomic and Molecular Physics and Optics010309 opticsINTERFEROMETRYOpticsMultiphoton intrapulse interference phase scan0103 physical sciencesFEMTOSECOND PULSES010306 general physicsbusiness2-PHOTON TRANSITIONSUltrashort pulsePhase modulationBandwidth-limited pulse
researchProduct

Formation of ultrashort triangular pulses in optical fibers

2014

Specialty shape ultrashort optical pulses, and triangular pulses in particular, are of great interest in optical signal processing. Compact fiber-based techniques for producing the special pulse waveforms from Gaussian or secant pulses delivered by modern ultrafast lasers are in demand in telecommunications. Using the nonlinear Schr¨odinger equation in an extended form the transformation of ultrashort pulses in a fiber towards triangular shape is characterized by the misfit parameter under variety of incident pulse shapes, energies, and chirps. It is shown that short (1-2 m) conventional single mode fiber can be used for triangular pulse formation in the steady-state regime without any pre-…

Femtosecond pulse shapingMaterials scienceFrequency-resolved optical gatingbusiness.industryLasersSingle-mode optical fiberPhysics::OpticsSignal Processing Computer-AssistedEquipment DesignÒpticaPulse shapingAtomic and Molecular Physics and OpticsOpticsMultiphoton intrapulse interference phase scanChirpTelecommunicationsComputer-Aided DesignFiber Optic TechnologybusinessUltrashort pulseBandwidth-limited pulseOptical Fibers
researchProduct

All-fiber processing of terahertz-bandwidth signals based on cascaded tapered fibers

2013

Tapered single-mode fibers are employed to perform dynamic pulse shaping in a bandwidth of several terahertz. The transfer function of cascaded biconical tapers is controlled by introducing a phase shift into one of them through mechanical stretching. It is a simple and low-cost technique with potential to process signals with bandwidths as large as those allocated by standard optical fiber while introducing little degradation. Femtosecond pulses are shaped to prove the concept. (C) 2013 Optical Society of America

Femtosecond pulse shapingMaterials scienceOptical fiberbusiness.industryTerahertz radiationBandwidth (signal processing)Physics::OpticsNonlinear opticsFiber measurementsTransfer functionPulse shapingAtomic and Molecular Physics and Opticslaw.inventionOpticslawTEORIA DE LA SEÑAL Y COMUNICACIONESFemtosecondFiber design and fabricationDispersion.businessOptics Letters
researchProduct

Experimental generation of parabolic pulses via Raman amplification in optical fiber

2003

Parabolic pulse generation via Raman amplification is experimentally demonstrated in 5.3 km of non-zero dispersion shifted fiber presenting normal group velocity dispersion at the injected signal pulse wavelength of 1550 nm. The fiber is pumped by a commercially-available continuous wave source at 1455 nm, and the intensity and chirp of the amplifier output are characterized using frequency-resolved optical gating. For 2.4 pJ input pulses of 10 ps duration, the output pulse characteristics are studied as a function of amplifier gain over the range 11-24 dB, allowing the evolution of the input pulse to a parabolic pulse to be clearly seen for amplifier gains exceeding 15 dB. Numerical compre…

Femtosecond pulse shapingOptical amplifierRaman amplificationMaterials sciencebusiness.industryPhysics::Optics02 engineering and technology01 natural sciencesAtomic and Molecular Physics and Optics010309 optics020210 optoelectronics & photonicsOpticsZero-dispersion wavelength0103 physical sciences0202 electrical engineering electronic engineering information engineeringChirpDispersion-shifted fiberbusinessUltrashort pulseBandwidth-limited pulseOptics Express
researchProduct

Impact of initial pulse shape on the nonlinear spectral compression in optical fibre

2018

International audience; We theoretically study the effects of the temporal intensity profile of the initial pulse on the nonlinear spectral compression process arising from nonlinear propagation in an optical fibre. Various linearly chirped input pulse profiles are considered, and their dynamics is explained with the aid of time-frequency representations. While initially parabolic-shaped pulses show enhanced spectral compression compared to Gaussian pulses, no significant spectral narrowing occurs when initially super-Gaussian pulses are used. Triangular pulses lead to a spectral interference phenomenon similar to the Fresnel bi-prism experiment.

Femtosecond pulse shapingOptical fiberMaterials scienceGaussianNonlinear spectral compression02 engineering and technologynonlinear fiber optics01 natural scienceslaw.invention010309 opticssymbols.namesake020210 optoelectronics & photonicsOpticslaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringElectrical and Electronic Engineering[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryPulse shapingAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsPulse (physics)Nonlinear systemsymbolsbusinessUltrashort pulseBandwidth-limited pulsepulse shaping
researchProduct

Experimental properties of parabolic pulses generated via Raman amplification in standard optical fibers

2004

Parabolic pulses at 1550 nm have been generated in a standard telecommunications fiber using Raman amplification. The parabolic output pulse characteristics are studied as a function of input pulse energy and duration.

Femtosecond pulse shapingOptical fiberMaterials scienceRaman amplificationbusiness.industryMathematics::Analysis of PDEsSecond-harmonic generationPulse shapinglaw.inventionOpticslawOptoelectronicsbusinessUltrashort pulseBandwidth-limited pulsePhotonic-crystal fiberNonlinear Guided Waves and Their Applications
researchProduct

Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating

2006

International audience; We propose a new method for generating flat self-phase modulation (SPM)-broadened spectra based on seeding a highly nonlinear fiber (HNLF) with chirp-free parabolic pulses generated using linear pulse shaping in a superstructured fiber Bragg grating (SSFBG). We show that the use of grating reshaped parabolic pulses allows substantially better performance in terms of the extent of SPM-based spectral broadening and flatness relative to conventional hyperbolic secant (sech) pulses. We demonstrate both numerically and experimentally the generation of SPMbroadened pulses centred at 1542nm with 92% of the pulse energy remaining within the 29nm 3dB spectral bandwidth. Appli…

Femtosecond pulse shapingPHOSFOSMaterials sciencebusiness.industryPhysics::Optics02 engineering and technology01 natural sciencesPulse shapingGraded-index fiberAtomic and Molecular Physics and Optics010309 optics020210 optoelectronics & photonicsOpticsFiber Bragg grating0103 physical sciences0202 electrical engineering electronic engineering information engineeringOptoelectronicsbusinessSelf-phase modulationBandwidth-limited pulsePhotonic-crystal fiber
researchProduct