Search results for "Bayesian network"

showing 10 items of 70 documents

Adaptive distributed outlier detection for WSNs.

2014

The paradigm of pervasive computing is gaining more and more attention nowadays, thanks to the possibility of obtaining precise and continuous monitoring. Ease of deployment and adaptivity are typically implemented by adopting autonomous and cooperative sensory devices; however, for such systems to be of any practical use, reliability and fault tolerance must be guaranteed, for instance by detecting corrupted readings amidst the huge amount of gathered sensory data. This paper proposes an adaptive distributed Bayesian approach for detecting outliers in data collected by a wireless sensor network; our algorithm aims at optimizing classification accuracy, time complexity and communication com…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniUbiquitous computingComputer scienceReal-time computingFault toleranceEnergy consumptionWSNComputer Science ApplicationsOutlier Detection.Human-Computer InteractionKey distribution in wireless sensor networksControl and Systems EngineeringBayesian NetworkOutlierAnomaly detectionElectrical and Electronic EngineeringCommunication complexityWireless sensor networkTime complexitySoftwareInformation SystemsIEEE transactions on cybernetics
researchProduct

Self-Perceived Health, Objective Health, and Quality of Life among People Aged 50 and Over: Interrelationship among Health Indicators in Italy, Spain…

2020

It is well known that self-perceived health (SPH), even if it is a subjective health indicator, is significantly associated with objective health and quality of life (QoL) in the general population. Whether it can be considered an indicator of cognitive functioning and quality of life in the elderly is still an open issue. This study used a data-driven approach to investigate the interrelationship among SPH, non-communicable diseases (NCDs), QoL, and cognitive functioning to answer this question. The study sample included information about 12,831 people living in Italy, Spain, and Greece, extracted from the Survey on Health, Aging, and Retirement in Europe, in the year 2015. The additive Ba…

Settore M-PSI/01 - Psicologia GeneraleMaleHealth Toxicology and MutagenesisHealth StatusPopulationlcsh:MedicineChronic diseases cognitive measureArticleSettore MED/01 - Statistica Medica03 medical and health sciences0302 clinical medicineQuality of lifeEnvironmental healthCredibilitychronic diseases cognitive measuresHumans030212 general & internal medicineCognitive skillself-perceived healtheducationAged2. Zero hungereducation.field_of_studyGreeceSettore SECS-S/02 - Statistica Per La Ricerca Sperimentale E Tecnologica030503 health policy & serviceslcsh:R1. No povertyPublic Health Environmental and Occupational HealthSelf perceived healthBayes TheoremMiddle AgedHealth indicatoradditive Bayesian network3. Good healthEuropeHealth promotionItalyquality of lifeSpainFemaleSelf Report0305 other medical sciencePsychologyBody mass indexInternational Journal of Environmental Research and Public Health
researchProduct

Causal models for monitoring University of Palermo ordinary financinf fund

2012

Settore SECS-S/05 - Statistica SocialeSettore SECS-S/01 - Statisticacausal model DAG bayesian network
researchProduct

Pathway analysis of high-throughput biological data within a Bayesian network framework

2011

Abstract Motivation: Most current approaches to high-throughput biological data (HTBD) analysis either perform individual gene/protein analysis or, gene/protein set enrichment analysis for a list of biologically relevant molecules. Bayesian Networks (BNs) capture linear and non-linear interactions, handle stochastic events accounting for noise, and focus on local interactions, which can be related to causal inference. Here, we describe for the first time an algorithm that models biological pathways as BNs and identifies pathways that best explain given HTBD by scoring fitness of each network. Results: Proposed method takes into account the connectivity and relatedness between nodes of the p…

Statistics and ProbabilityComputer scienceHigh-throughput screeningGene regulatory networkcomputer.software_genreModels BiologicalBiochemistrySynthetic dataBiological pathwayBayes' theoremHumansGene Regulatory NetworksCarcinoma Renal CellMolecular BiologyGeneBiological dataMicroarray analysis techniquesGene Expression ProfilingBayesian networkRobustness (evolution)Bayes TheoremPathway analysisKidney NeoplasmsHigh-Throughput Screening AssaysComputer Science ApplicationsGene expression profilingComputational MathematicsComputational Theory and MathematicsCausal inferenceData miningcomputerAlgorithmsSoftwareBioinformatics
researchProduct

A Knowledge Management and Decision Support Model for Enterprises

2011

We propose a novel knowledge management system (KMS) for enterprises. Our system exploits two different approaches for knowledge representation and reasoning: a document-based approach based on data-driven creation of a semantic space and an ontology-based model. Furthermore, we provide an expert system capable of supporting the enterprise decisional processes and a semantic engine which performs intelligent search on the enterprise knowledge bases. The decision support process exploits the Bayesian networks model to improve business planning process when performed under uncertainty. Copyright © 2011 Patrizia Ribino et al.

Statistics and ProbabilityKnowledge Management SystemsSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniDecision support systemKnowledge managementArticle SubjectKnowledge representation and reasoningExploitProcess (engineering)business.industryComputer sciencelcsh:MathematicsApplied MathematicsGeneral Decision SciencesBayesian networkOntology (information science)lcsh:QA1-939computer.software_genreExpert systemComputational MathematicsKnowledge-based systemsbusinesscomputer
researchProduct

Gaussian component mixtures and CAR models in Bayesian disease mapping

2012

Hierarchical Bayesian models involving conditional autoregression (CAR) components are commonly used in disease mapping. An alternative model to the proper or improper CAR is the Gaussian component mixture (GCM) model. A review of CAR and GCM models is provided in univariate settings where only one disease is considered, and also in multivariate situations where in addition to the spatial dependence between regions, the dependence among multiple diseases is analyzed. A performance comparison between models using a set of simulated data to help illustrate their respective properties is reported. The results show that both in univariate and multivariate settings, both models perform in a comp…

Statistics and ProbabilityMultivariate statisticsApplied MathematicsGaussianBayesian probabilityUnivariateVariable-order Bayesian networkComputational Mathematicssymbols.namesakeComputational Theory and MathematicsAutoregressive modelStatisticsRange (statistics)symbolsEconometricsSpatial dependenceMathematicsComputational Statistics & Data Analysis
researchProduct

Contributed discussion on article by Pratola

2016

The author should be commended for his outstanding contribution to the literature on Bayesian regression tree models. The author introduces three innovative sampling approaches which allow for efficient traversal of the model space. In this response, we add a fourth alternative.

Statistics and Probabilitymodel selectionMarkov Chain Monte Carlo (MCMC)Bayesian regression treeComputer scienceBig dataBayesian regression tree (BRT) modelsComputingMilieux_LEGALASPECTSOFCOMPUTINGbirth–death processMachine learningcomputer.software_genreSequential Monte Carlo methods01 natural sciencespopulation Markov chain Monte Carlo010104 statistics & probabilitysymbols.namesakebig data0502 economics and businessBayesian Regression Trees (BART)0101 mathematics050205 econometrics Bayesian treed regressionMultiple Try Metropolis algorithmsINFERÊNCIA ESTATÍSTICAbusiness.industryApplied MathematicsModel selection05 social sciencesRejection samplingData scienceVariable-order Bayesian networkTree (data structure)Tree traversalMarkov chain Monte Carlocontinuous time Markov processsymbolsArtificial intelligencebusinessBayesian linear regressioncommunication-freecomputerGibbs samplingBayesian Analysis
researchProduct

A probabilistic expert system for predicting the risk of Legionella in evaporative installations

2011

Research highlights? The bacterium Legionella usually lives in water sources such as cooling towers. ? We discuss a probabilistic expert system for predicting the risk of Legionella. ? The expert system has a master-slave architecture. ? The inference engine is implemented through Bayesian reasoning. ? Bayesian networks model and connect relationships for chemical and physical variables. Early detection in water evaporative installations is one of the keys to fighting against the bacterium Legionella, the main cause of Legionnaire's disease. This paper discusses the general structure, elements and operation of a probabilistic expert system capable of predicting the risk of Legionella in rea…

Structure (mathematical logic)Computer sciencebusiness.industryGeneral EngineeringProbabilistic logicBayesian networkMarkov chain Monte CarloBayesian inferenceMachine learningcomputer.software_genreExpert systemComputer Science Applicationssymbols.namesakeArtificial IntelligencesymbolsData miningArtificial intelligenceInference enginebusinesscomputerParametric statisticsExpert Systems with Applications
researchProduct

Assessment of the impacts of an oil spill on the populations of common guillemot (Uria aalge) and long-tailed duck (Clangula hyemalis) - an expert kn…

2012

The amount of operated oil transports continues to increase in the Gulf of Finland and in the case of an accident hazardous amounts of oil may be spilled into the sea. The oil accident may be harmful for the common guillemot and long-tailed duck populations. In this study expert knowledge regarding the behaviour and population dynamics of common guillemot and long-tailed duck in the Gulf of Finland was used to build a model to assess the impacts of an oil spill on the mortality and population size of these species. The Bayesian networks were used in the modelling. Based on the results the breeding colony of guillemots in Aspskär may survive in the consequence of recolonization. In conclusio…

The Gulf of FinlandBayesian networksoil spillSuomenlahtiUria aalgelinnutClangula hyemalisöljyonnettomuudetetelänkiislaalli
researchProduct

Analysis and modeling of wind directions time series

2013

This work aims at studying some aspects of wind directions in Italy and supplying appropriate models. A comparison is presented between independent mixture and Hidden Markov models, which seem to be appropriate as far as the series we studied.

Wind powerSeries (mathematics)business.industryComputer scienceVariable-order Markov modelWind directionMixture modelMarkov modelIndustrial engineeringdirectional data; wind direction time seriesVariable-order Bayesian networkSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Settore FIS/03 - Fisica Della Materiadirectional dataEconometricswind direction time seriesHidden Markov modelbusiness
researchProduct