Search results for "Biocompatible Materials"
showing 10 items of 243 documents
Long-Term in vivo Evaluation of Orthotypical and Heterotypical Bioengineered Human Corneas.
2020
Purpose: Human cornea substitutes generated by tissue engineering currently require limbal stem cells for the generation of orthotypical epithelial cell cultures. We recently reported that bioengineered corneas can be fabricated in vitro from a heterotypical source obtained from Wharton’s jelly in the human umbilical cord (HWJSC). Methods: Here, we generated a partial thickness cornea model based on plastic compression nanostructured fibrin-agarose biomaterials with cornea epithelial cells on top, as an orthotypical model (HOC), or with HWJSC, as a heterotypical model (HHC), and determined their potential in vivo usefulness by implantation in an animal model. Results: No major side effects …
Basement Membrane Mimics of Biofunctionalized Nanofibers for a Bipolar-Cultured Human Primary Alveolar-Capillary Barrier Model
2017
In vitro reconstruction of an alveolar barrier for modeling normal lung functions and pathological events serve as reproducible, high-throughput pharmaceutical platforms for drug discovery, diagnosis, and regenerative medicine. Despite much effort, the reconstruction of organ-level alveolar barrier functions has failed due to the lack of structural similarity to the natural basement membrane, functionalization with specific ligands for alveolar cell function, the use of primary cells and biodegradability. Here we report a bipolar cultured alveolar-capillary barrier model of human primary cells supported by a basement membrane mimics of fully synthetic bifunctional nanofibers. One-step elect…
Amorphous polyphosphate–hydroxyapatite: A morphogenetically active substrate for bone-related SaOS-2 cells in vitro
2015
There is increasing evidence that inorganic calcium-polyphosphates (polyP) are involved in human bone hydroxyapatite (HA) formation. Here we investigated the morphology of the particles, containing calcium phosphate (CaP) with different concentrations of various Na-polyP concentrations, as well as their effects in cell culture. We used both SaOS-2 cells and human mesenchymal stem cells. The polymeric phosphate readily binds calcium ions under formation of insoluble precipitates. We found that addition of low concentrations of polyP (10wt.%, referred to the CaP deposits) results in an increased size of the HA crystals. Surprisingly, at higher polyP concentrations (10wt.%) the formation of cr…
Wet Chemistry and Peptide Immobilization on Polytetrafluoroethylene for Improved Cell-adhesion
2016
Endowing materials surface with cell-adhesive properties is a common strategy in biomaterial research and tissue engineering. This is particularly interesting for already approved polymers that have a long standing use in medicine because these materials are well characterized and legal issues associated with the introduction of newly synthesized polymers may be avoided. Polytetrafluoroethylene (PTFE) is one of the most frequently employed materials for the manufacturing of vascular grafts but the polymer lacks cell adhesion promoting features. Endothelialization, i.e., complete coverage of the grafts inner surface with a confluent layer of endothelial cells is regarded key to optimal perfo…
Heat- and pH-induced BSA conformational changes, hydrogel formation and application as 3D cell scaffold
2016
Aggregation and gelation of globular proteins can be an advantage to generate new forms of nanoscale biomaterials based on the fibrillar architecture. Here, we report results obtained by exploiting the proteins' natural tendency to self-organize in 3D network, for the production of new material based on BSA for medical application. In particular, at five different pH values the conformational and structural changes of the BSA during all the steps of the thermal aggregation and gelation have been analyzed by FTIR spectroscopy. The macroscopic mechanical properties of these hydrogels have been obtained by rheological measurements. The microscopic structure of the gels have been studied by AFM…
Salmon fibrinogen and chitosan scaffold for tissue engineering: in vitro and in vivo evaluation
2018
3D fibrous scaffolds have received much recent attention in regenerative medicine. Use of fibrous scaffolds has shown promising results in tissue engineering and wound healing. Here we report the development and properties of a novel fibrous scaffold that is useful for promoting wound healing. A scaffold made of salmon fibrinogen and chitosan is produced by electrospinning, resulting in a biocompatible material mimicking the structure of the native extracellular matrix (ECM) with suitable biochemical and mechanical properties. The scaffold is produced without the need for enzymes, in particular thrombin, but is fully compatible with their addition if needed. Human dermal fibroblasts culture…
Comparative study of the production of soluble factors in human placenta-derived mesenchymal stromal/stem cells grown in adherent conditions or as ag…
2019
Abstract Different approaches have been studied in both preclinical and clinical settings to develop cell-based therapies and/or engineered cell-based therapies to better integrate grafts with the host. In these techniques, much attention is addressed to the use of adult stem cells such as mesenchymal stem cells (MSCs), but identifying and obtaining sufficient numbers of therapeutic cells, and the right route of administration, is often a challenge. In this study, we tested the feasibility of encapsulating human amnion-derived MSCs (hAMSCs) in a semipermeable and biocompatible fiber as a new approach for regenerative medicine. Our data showed that hAMSCs aggregated in the device constitutes…
Recent advances in the use of nanoparticles for allergen-specific immunotherapy
2017
The number of patients suffering from allergic asthma and rhinoconjunctivitis has increased dramatically within the last decades. Allergen-specific immunotherapy (AIT) is the only available cause-oriented therapy so far. AIT reduces symptoms, but has also a disease-modifying effect. Disadvantages are a long-lasting procedure, and in a few cases potential systemic adverse reactions. Encapsulation of allergens or DNA vaccines into nanostructures may provide advantages compared to the conventional AIT with noncapsulated allergen extracts: The protein/DNA molecule can be protected from degradation, higher local concentrations and targeted delivery to the site of action appear possible, and most…
Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today.
2020
The field of tissue engineering has numerous potential for modified therapeutic results and has been inspired by enhancements in bioengineering at the recent decades. The techniques of regenerating tissues and assembling functional paradigms that are responsible for repairing, maintaining, and revitalizing lost organs and tissues have affected the entire spectrum of health care studies. Strategies to combine bioactive molecules, biocompatible materials and cells are important for progressing the renewal of damaged tissues. Hydrogels have been utilized as one of the most popular cell substrate/carrier in tissue engineering since previous decades, respect to their potential to retain a 3D str…
Evaluation of the antibacterial power and biocompatibility of zinc oxide nanorods decorated graphene nanoplatelets: New perspectives for antibiodeter…
2017
Background Nanotechnologies are currently revolutionizing the world around us, improving the quality of our lives thanks to a multitude of applications in several areas including the environmental preservation, with the biodeterioration phenomenon representing one of the major concerns. Results In this study, an innovative nanomaterial consisting of graphene nanoplatelets decorated by zinc oxide nanorods (ZNGs) was tested for the ability to inhibit two different pathogens belonging to bacterial genera frequently associated with nosocomial infections as well as biodeterioration phenomenon: the Gram-positive Staphylococcus aureus and the Gram-negative Pseudomonas aeruginosa. A time- and dose-…