Search results for "Biological physics"

showing 10 items of 153 documents

On the thermodynamic origin of metabolic scaling

2018

The origin and shape of metabolic scaling has been controversial since Kleiber found that basal metabolic rate of animals seemed to vary as a power law of their body mass with exponent 3/4, instead of 2/3, as a surface-to-volume argument predicts. The universality of exponent 3/4 -claimed in terms of the fractal properties of the nutrient network- has recently been challenged according to empirical evidence that observed a wealth of robust exponents deviating from 3/4. Here we present a conceptually simple thermodynamic framework, where the dependence of metabolic rate with body mass emerges from a trade-off between the energy dissipated as heat and the energy efficiently used by the organi…

0106 biological sciences0301 basic medicineFOS: Physical scienceslcsh:Medicine92B05010603 evolutionary biology01 natural sciencesPower lawArticle03 medical and health sciencesFractalPhysics - Biological PhysicsStatistical physicslcsh:ScienceQuantitative Biology - Populations and EvolutionAdditive modelScalingMathematicsMultidisciplinarylcsh:RPopulations and Evolution (q-bio.PE)Universality (dynamical systems)030104 developmental biologyBiological Physics (physics.bio-ph)13. Climate actionFOS: Biological sciencesEctothermBasal metabolic rateExponentlcsh:QScientific Reports
researchProduct

Coping with the climate: cuticular hydrocarbon acclimation of ants under constant and fluctuating conditions

2018

International audience; Terrestrial arthropods achieve waterproofing by a layer of cuticular hydrocarbons (CHCs). At the same time, CHCs also serve as communication signals. To maintain waterproofing under different climate conditions, insects adjust the chemical composition of their CHC layer, but this may affect the communication via CHCs. The detailed acclimatory changes of CHCs and how these influence their physical properties are still unknown. Here, we studied acclimation in two closely related ant species with distinct CHC profiles, Myrmica rubra and Myrmica ruginodis, in response to constant or fluctuating temperature and humidity regimes. We measured how acclimation affected CHC co…

0106 biological sciences0301 basic medicineHot TemperaturePhysiologyDesiccation resistanceAcclimatizationClimateClimate Change[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]Phenotypic plasticityAquatic ScienceMyrmica rubra010603 evolutionary biology01 natural sciencesAcclimatizationDrought survivalCHCs03 medical and health sciencesSpecies SpecificityAnimalsRelative humidityMyrmica ruginodisSolid contentMicrorheologyMolecular BiologyEcology Evolution Behavior and Systematicschemistry.chemical_classificationPhenotypic plasticitybiologyAntsEcologyViscosityHumidityHumidity15. Life on landbiology.organism_classificationHydrocarbons[SDV.BA.ZI]Life Sciences [q-bio]/Animal biology/Invertebrate Zoology030104 developmental biologyHydrocarbonchemistry13. Climate actionInsect ScienceAnimal Science and Zoology[SDV.EE.BIO]Life Sciences [q-bio]/Ecology environment/BioclimatologyRheology[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]
researchProduct

Microtubule disruption changes endothelial cell mechanics and adhesion

2019

AbstractThe interest in studying the mechanical and adhesive properties of cells has increased in recent years. The cytoskeleton is known to play a key role in cell mechanics. However, the role of the microtubules in shaping cell mechanics is not yet well understood. We have employed Atomic Force Microscopy (AFM) together with confocal fluorescence microscopy to determine the role of microtubules in cytomechanics of Human Umbilical Vein Endothelial Cells (HUVECs). Additionally, the time variation of the adhesion between tip and cell surface was studied. The disruption of microtubules by exposing the cells to two colchicine concentrations was monitored as a function of time. Already, after 3…

0301 basic medicineCell biologyIntravital MicroscopyScienceConfocalCellBiophysicsCell Culture Techniques02 engineering and technologyMicroscopy Atomic ForceMechanotransduction CellularMicrotubulesArticleUmbilical veinCell Line03 medical and health sciencesMicrotubuleCell AdhesionHuman Umbilical Vein Endothelial CellsFluorescence microscopemedicineHumansCytoskeletonCytoskeletonMicroscopy ConfocalMultidisciplinaryDose-Response Relationship DrugChemistryPhysicsQRMechanicsAdhesion021001 nanoscience & nanotechnologyMaterials scienceApplied physicsEndothelial stem cell030104 developmental biologymedicine.anatomical_structureMicroscopy FluorescenceMedicineBiomaterials - cellsColchicine0210 nano-technologyBiological physicsScientific Reports
researchProduct

Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics

2016

AbstractBioelectrical signals and ion channels are central to spatial patterns in cell ensembles, a problem of fundamental interest in positional information and cancer processes. We propose a model for electrically connected cells based on simple biological concepts: i) the membrane potential of a single cell characterizes its electrical state; ii) the long-range electrical coupling of the multicellular ensemble is realized by a network of gap junction channels between neighboring cells; and iii) the spatial distribution of an external biochemical agent can modify the conductances of the ion channels in a cell membrane and the multicellular electrical state. We focus on electrical effects …

0301 basic medicineCell signalingComputer scienceCèl·lulesQuantitative Biology::Tissues and OrgansCellElectrophysiological PhenomenaCell CommunicationModels BiologicalArticleBiophysical PhenomenaIon ChannelsMembrane PotentialsQuantitative Biology::Cell BehaviorCell membraneion transport03 medical and health sciences0302 clinical medicineNeoplasmsmedicineHumansbiological physicsIon channelIon transporterMembrane potentialMultidisciplinaryBiophysical PhenomenaGap junctionGap JunctionsBiofísicaElectrophysiological PhenomenaMulticellular organism030104 developmental biologymedicine.anatomical_structure030220 oncology & carcinogenesisBiophysicsScientific Reports
researchProduct

Collective behavior of quorum-sensing run-and-tumble particles in confinement

2016

We study a generic model for quorum-sensing bacteria in circular confinement. Every bacterium produces signaling molecules, the local concentration of which triggers a response when a certain threshold is reached. If this response lowers the motility then an aggregation of bacteria occurs, which differs fundamentally from standard motility-induced phase separation due to the long-ranged nature of the concentration of signal molecules. We analyze this phenomenon analytically and by numerical simulations employing two different protocols leading to stationary cluster and ring morphologies, respectively.

0301 basic medicineCollective behaviorGeneral Physics and AstronomyFOS: Physical sciencesNanotechnologyCondensed Matter - Soft Condensed MatterBacterial Physiological Phenomena01 natural sciencesSignalModels BiologicalQuantitative Biology::Cell BehaviorQuantitative Biology::Subcellular Processes03 medical and health sciences0103 physical sciencesCell Behavior (q-bio.CB)Cluster (physics)Physics - Biological Physics010306 general physicsCondensed Matter - Statistical MechanicsPhysicsStatistical Mechanics (cond-mat.stat-mech)ChemotaxisQuorum SensingQuorum sensing030104 developmental biologyChemical physicsBiological Physics (physics.bio-ph)FOS: Biological sciencesQuantitative Biology - Cell BehaviorSoft Condensed Matter (cond-mat.soft)
researchProduct

Dynamic coarse-graining fills the gap between atomistic simulations and experimental investigations of mechanical unfolding

2017

We present a dynamic coarse-graining technique that allows to simulate the mechanical unfolding of biomolecules or molecular complexes on experimentally relevant time scales. It is based on Markov state models (MSM), which we construct from molecular dynamics simulations using the pulling coordinate as an order parameter. We obtain a sequence of MSMs as a function of the discretized pulling coordinate, and the pulling process is modeled by switching among the MSMs according to the protocol applied to unfold the complex. This way we cover seven orders of magnitude in pulling speed. In the region of rapid pulling we additionally perform steered molecular dynamics simulations and find excellen…

0301 basic medicineDiscretizationGeneral Physics and AstronomyMarkov processFOS: Physical sciencesCondensed Matter - Soft Condensed Matter01 natural sciences03 medical and health sciencesMolecular dynamicssymbols.namesake0103 physical sciencesPhysics - Biological PhysicsStatistical physicsPhysical and Theoretical Chemistry010306 general physicsPhysicsQuantitative Biology::BiomoleculesMarkov chainMolecular biophysicsBiomolecules (q-bio.BM)Function (mathematics)030104 developmental biologyQuantitative Biology - BiomoleculesOrders of magnitude (time)Biological Physics (physics.bio-ph)FOS: Biological sciencessymbolsSoft Condensed Matter (cond-mat.soft)Granularity
researchProduct

Biophysics of high density nanometer regions extracted from super-resolution single particle trajectories: application to voltage-gated calcium chann…

2019

AbstractThe cellular membrane is very heterogenous and enriched with high-density regions forming microdomains, as revealed by single particle tracking experiments. However the organization of these regions remain unexplained. We determine here the biophysical properties of these regions, when described as a basin of attraction. We develop two methods to recover the dynamics and local potential wells (field of force and boundary). The first method is based on the local density of points distribution of trajectories, which differs inside and outside the wells. The second method focuses on recovering the drift field that is convergent inside wells and uses the transient field to determine the…

0301 basic medicineField (physics)1.1 Normal biological development and functioningHigh densityBoundary (topology)lcsh:Medicine32 Biomedical and Clinical SciencesLocal field potentialArticleQuantitative Biology::Cell BehaviorQuantitative Biology::Subcellular ProcessesComputational biophysics03 medical and health sciences0302 clinical medicineSingle-molecule biophysics1 Underpinning researchlcsh:SciencePhysicsMultidisciplinary3208 Medical PhysiologyVoltage-dependent calcium channelFOS: Clinical medicinelcsh:RNeurosciencesScientific data030104 developmental biologyParticleNanometrelcsh:QBiological systemBiological physics51 Physical Sciences030217 neurology & neurosurgeryEnergy (signal processing)
researchProduct

Conformational dynamics of a single protein monitored for 24 hours at video rate

2018

We use plasmon rulers to follow the conformational dynamics of a single protein for up to 24 h at a video rate. The plasmon ruler consists of two gold nanospheres connected by a single protein linker. In our experiment, we follow the dynamics of the molecular chaperone heat shock protein 90 (Hsp90), which is known to show “open” and “closed” conformations. Our measurements confirm the previously known conformational dynamics with transition times in the second to minute time scale and reveals new dynamics on the time scale of minutes to hours. Plasmon rulers thus extend the observation bandwidth 3–4 orders of magnitude with respect to single-molecule fluorescence resonance energy transfer a…

0301 basic medicineLetterProtein ConformationMolecular ConformationFOS: Physical sciencesHsp90Bioengineeringsingle molecule02 engineering and technology7. Clean energyQuantitative Biology - Quantitative Methods03 medical and health sciencesMolecular dynamicsFluorescence Resonance Energy TransferNanotechnologyGeneral Materials ScienceHSP90 Heat-Shock ProteinsPhysics - Biological PhysicsQuantitative Methods (q-bio.QM)PlasmonPhysicsVideo rateMechanical EngineeringProtein dynamics92Biomolecules (q-bio.BM)General ChemistrySurface Plasmon Resonance021001 nanoscience & nanotechnologyCondensed Matter PhysicsGold nanospheres030104 developmental biologyFörster resonance energy transferQuantitative Biology - BiomoleculesBiological Physics (physics.bio-ph)Chemical physicsFOS: Biological sciencesprotein dynamicsPlasmon rulernonergodicityGold0210 nano-technologyLinker
researchProduct

Mapping brain activity with flexible graphene micro-transistors

2016

arXiv:1611.05693v1.-- et al.

0301 basic medicineMaterials scienceFOS: Physical sciences02 engineering and technologylaw.invention03 medical and health scienceslawGeneral Materials ScienceElectronicsPhysics - Biological PhysicsNeural implantsBioelectronicsBioelectronicsbusiness.industryGrapheneSensorsMechanical EngineeringTransistorGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsField-effect transistorsMicroelectrodeBrain implant030104 developmental biologyBiological Physics (physics.bio-ph)Mechanics of MaterialsFOS: Biological sciencesQuantitative Biology - Neurons and CognitionOptoelectronicsNeurons and Cognition (q-bio.NC)Charge carrierField-effect transistorGraphene0210 nano-technologybusiness2D Materials
researchProduct

The effects of pressure on the energy landscape of proteins

2018

AbstractProtein dynamics is characterized by fluctuations among different conformational substates, i.e. the different minima of their energy landscape. At temperatures above ~200 K, these fluctuations lead to a steep increase in the thermal dependence of all dynamical properties, phenomenon known as Protein Dynamical Transition. In spite of the intense studies, little is known about the effects of pressure on these processes, investigated mostly near room temperature. We studied by neutron scattering the dynamics of myoglobin in a wide temperature and pressure range. Our results show that high pressure reduces protein motions, but does not affect the onset temperature for the Protein Dynam…

0301 basic medicineMaterials science[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph]lcsh:MedicineProtein dynamicsNeutron scatteringMolecular Dynamics Simulation01 natural sciencesArticleBiomaterials03 medical and health sciencesMolecular dynamicschemistry.chemical_compoundProtein Domains0103 physical sciencesThermalPressureAnimalsElastic neutron scatteringHorses010306 general physicslcsh:ScienceComputingMilieux_MISCELLANEOUSRange (particle radiation)Quantitative Biology::BiomoleculesMultidisciplinaryMyoglobinProtein dynamicslcsh:RTemperatureEnergy landscape030104 developmental biologyTemperature and pressureMyoglobinchemistrySoft MatterChemical physicsThermodynamicslcsh:QMolecular BiophysicsScientific Reports
researchProduct