Search results for "Biosensing techniques"
showing 10 items of 96 documents
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology
2016
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered,…
Highly selective detection of Epinephrine at oxidized Single-Wall Carbon Nanohorns modified Screen Printed Electrodes (SPEs)
2014
Oxidized Single-Wall Carbon Nanohorns (o-SWCNHs) were used, for the first time, to assemble chemically modified Screen Printed Electrodes (SPEs) selective towards the electrochemical detection of Epinephrine (Ep), in the presence of Serotonine-5-HT (S-5HT), Dopamine (DA), Nor-Epineprhine (Nor-Ep), Ascorbic Acid (AA), Acetaminophen (Ac) and Uric Acid (UA). The Ep neurotransmitter was detected by using Differential Pulse Voltammetry (DPV), in a wide linear range of concentration (2-2500 μM) with high sensitivity (55.77 A M(-1) cm(-2)), very good reproducibility (RSD% ranging from 2 to 10 for different SPEs), short response time for each measurement (only 2s) and low detection of limit (LOD=0.…
Analytical, thermodynamical and kinetic characteristics of photoluminescence immunosensor for the determination of Ochratoxin A
2017
Ochratoxin A (OTA) is one of the most widespread and dangerous food contaminants. Therefore, rapid, label-free and precise detection of low OTA concentrations requires novel sensing elements with advanced bio-analytical properties. In the present paper we report photoluminescence (PL) based immunosensor for the detection of OTA. During the development of immunosensor photoluminescent ZnO nanorods (ZnO-NRs) were deposited on glass substrate. Then the ZnO-NRs were silanized and covalently modified by Protein-A (Glass/ZnO-NRs/Protein-A). The latest structure was modified by antibodies against OTA (Anti-OTA) in order to form OTA-selective layer (Glass/ZnO-NRs/Protein-A/Anti-OTA). In order to im…
Nanomaterial-based cocaine aptasensors.
2015
Up to now, many different methods have been developed for detection of cocaine, but most of these methods are usually time-consuming, tedious and require special or expensive equipment. Therefore, the development of simple, sensitive and rapid detection methods is necessary. In the last decade, aptamers have been used as a new biosensor platform for detection of cocaine in different samples. Aptamers are artificial single-stranded DNA or RNA oligonucleotides capable of binding to specific molecular targets with high affinity and if integrated to nanomaterials, it may lead in precise methods for cocaine detection in the common laboratories. In this review, recent advances and applications of…
Plasmonics co-integrated with silicon nitride photonics for high-sensitivity interferometric biosensing
2019
We demonstrate a photonic integrated Mach-Zehnder interferometric sensor, utilizing a plasmonic stripe waveguide in the sensing branch and a photonic variable optical attenuator and a phase shifter in the reference arm to optimize the interferometer operation. The plasmonic sensor is used to detect changes in the refractive index of the surrounding medium exploiting the accumulated phase change of the propagating Surface-Plasmon-Polariton (SPP) mode that is fully exposed in an aqueous buffer solution. The variable optical attenuation stage is incorporated in the reference Si3N4 branch, as the means to counter-balance the optical losses introduced by the plasmonic branch and optimize interfe…
Birth of the Localized Surface Plasmon Resonance in Monolayer-Protected Gold Nanoclusters
2013
Gold nanoclusters protected by a thiolate monolayer (MPC) are widely studied for their potential applications in site-specific bioconjugate labeling, sensing, drug delivery, and molecular electronics. Several MPCs with 1-2 nm metal cores are currently known to have a well-defined molecular structure, and they serve as an important link between molecularly dispersed gold and colloidal gold to understand the size-dependent electronic and optical properties. Here, we show by using an ab initio method together with atomistic models for experimentally observed thiolate-stabilized gold clusters how collective electronic excitations change when the gold core of the MPC grows from 1.5 to 2.0 nm. A …
CRISPR-Cas12a-Based Detection of SARS-CoV-2 Harboring the E484K Mutation
2021
The novel respiratory virus SARS-CoV-2 is rapidly evolving across the world with the potential of increasing its transmission and the induced disease. Here, we applied the CRISPR-Cas12a system to detect, without the need of sequencing, SARS-CoV-2 genomes harboring the E484K mutation, first identified in the Beta variant and catalogued as an escape mutation. The E484K mutation creates a canonical protospacer adjacent motif for Cas12a recognition in the resulting DNA amplicon, which was exploited to obtain a differential readout. We analyzed a series of fecal samples from hospitalized patients in Valencia (Spain), finding one infection with SARS-CoV-2 harboring the E484K mutation, which was t…
"Writing biochips": high-resolution droplet-to-droplet manufacturing of analytical platforms.
2022
The development of high-resolution molecular printing allows the engineering of analytical platforms enabling applications at the interface between chemistry and biology, i.e. in biosensing, electronics, single-cell biology, and point-of-care diagnostics. Their successful implementation stems from the combination of large area printing at resolutions from sub-100 nm up to macroscale, whilst controlling the composition and the volume of the ink, and reconfiguring the deposition features in due course. Similarly to handwriting pens, the engineering of continuous writing systems tackles the issue of the tedious ink replenishment between different printing steps. To this aim, this review articl…
Cardiac Glycosides Exert Anticancer Effects by Inducing Immunogenic Cell Death
2012
Some successful chemotherapeutics, notably anthracyclines and oxaliplatin, induce a type of cell stress and death that is immunogenic, hence converting the patient's dying cancer cells into a vaccine that stimulates antitumor immune responses. By means of a fluorescence microscopy platform that allows for the automated detection of the biochemical hallmarks of such a peculiar cell death modality, we identified cardiac glycosides (CGs) as exceptionally efficient inducers of immunogenic cell death, an effect that was associated with the in- hibition of the plasma membrane Na + - and K + -dependent adenosine triphosphatase (Na + /K + -ATPase). CGs ex- acerbated the antineoplastic effects of DN…
Bioassays to monitor taspase1 function for the identification of pharmacogenetic inhibitors
2011
Background Threonine Aspartase 1 (Taspase1) mediates cleavage of the mixed lineage leukemia (MLL) protein and leukemia provoking MLL-fusions. In contrast to other proteases, the understanding of Taspase1's (patho)biological relevance and function is limited, since neither small molecule inhibitors nor cell based functional assays for Taspase1 are currently available. Methodology/Findings Efficient cell-based assays to probe Taspase1 function in vivo are presented here. These are composed of glutathione S-transferase, autofluorescent protein variants, Taspase1 cleavage sites and rational combinations of nuclear import and export signals. The biosensors localize predominantly to the cytoplasm…