Search results for "Bone Morphogenetic Protein"

showing 10 items of 68 documents

Interaction of the retinoic acid signaling pathway with spicule formation in the marine sponge Suberites domuncula through activation of bone morphog…

2011

Abstract Background The formation of the spicules in siliceous sponges involves the formation of cylinder-like structures in the extraspicular space, composed of the enzyme silicatein and the calcium-dependent lectin. Scope of review Molecular cloning of the cDNAs (carotene dioxygenase, retinal dehydrogenase, and BMB-1 [bone morphogenic protein-1]) from the demosponge Suberites domuncula was performed. These tools were used to understand the retinoid metabolism in the animal by qRT-PCR, immunoblotting and TEM. Major conclusions We demonstrate that silintaphin-2, a silicatein-interacting protein, is processed from a longer-sized 15-kDa precursor to a truncated, shorter-sized 13 kDa calcium-b…

Retinal dehydrogenaseMolecular Sequence DataBiophysicsRetinoic acidMarine BiologyTretinoinReal-Time Polymerase Chain ReactionBiochemistryBone morphogenetic protein 1Bone Morphogenetic Protein 103 medical and health scienceschemistry.chemical_compoundDemospongeSponge spiculeAnimalsCloning MolecularMolecular BiologyDNA Primers030304 developmental biology0303 health sciencesBase Sequencebiology030302 biochemistry & molecular biologybiology.organism_classificationPoriferaSuberites domunculaSpongechemistryBiochemistrySignal transductionSignal TransductionBiochim. Biophys. Acta
researchProduct

Development of a morphogenetically active scaffold for three-dimensional growth of bone cells: biosilica-alginate hydrogel for SaOS-2 cell cultivation

2013

Polymeric silica is formed from ortho-silicate during a sol–gel formation process, while biosilica is the product of an enzymatically driven bio-polycondensation reaction. Both polymers have recently been described as a template that induces an increased expression of the genes encoding bone morphogenetic protein 2 (BMP-2) and osteoprotegerin in osteoblast-related SaOS-2 cells; simultaneously or subsequently the cells respond with enhanced hydroxyapatite formation. In order to assess whether the biocompatible polymeric silica/biosilica can serve as a morphogenetically active matrix suitable for three-dimensional (3D) cell growth, or even for 3D cell bioprinting, SaOS-2 cells were embedded i…

ScaffoldCell growthChemistryCelltechnology industry and agricultureBiomedical EngineeringMedicine (miscellaneous)macromolecular substancescomplex mixturesBone morphogenetic protein 2BiomaterialsCollagen type I alpha 1medicine.anatomical_structureBone cellSelf-healing hydrogelsmedicineBiophysicsSaos-2 cellsBiomedical engineeringJournal of Tissue Engineering and Regenerative Medicine
researchProduct

The Deep-Sea Natural Products, Biogenic Polyphosphate (Bio-PolyP) and Biogenic Silica (Bio-Silica), as Biomimetic Scaffolds for Bone Tissue Engineeri…

2013

Bone defects in human, caused by fractures/nonunions or trauma, gain increasing impact and have become a medical challenge in the present-day aging population. Frequently, those fractures require surgical intervention which ideally relies on autografts or suboptimally on allografts. Therefore, it is pressing and likewise challenging to develop bone substitution materials to heal bone defects. During the differentiation of osteoblasts from their mesenchymal progenitor/stem cells and of osteoclasts from their hemopoietic precursor cells, a lineage-specific release of growth factors and a trans-lineage homeostatic cross-talk via signaling molecules take place. Hence, the major hurdle is to fab…

ScaffoldCell signalingOsteoclastsPharmaceutical Sciencebio-polyphosphateReview02 engineering and technologyscaffoldBone morphogenetic protein 2Bone and BonesExtracellular matrix03 medical and health sciencesOsteoprotegerinBiomimetic MaterialsPolyphosphatesBMP-2Drug DiscoveryMorphogenesisAnimalsHumansbone tissue engineeringPharmacology Toxicology and Pharmaceutics (miscellaneous)lcsh:QH301-705.5030304 developmental biologymorphogenetic scaffoldsBiological Products0303 health sciencesOsteoblastsTissue EngineeringTissue Scaffoldsbiologybio-silicaChemistryMesenchymal stem cellRANKLAnatomySilicon Dioxide021001 nanoscience & nanotechnologyCell biologylcsh:Biology (General)RANKLosteoprotegerinbiology.proteinStem cell0210 nano-technologyMarine Drugs
researchProduct

BMP7v induces cancer stem cells differentiation and enhances chemotherapy response in colorectal cancer

2014

Cancer stem cells (CSCs), characterized by high levels of ATP-binding cassette, anti-apoptotic molecules, active DNA-repair and slow replication capacities, surviving to conventional anti-cancer therapies, able to eradicate only the highly proliferating tumor cells, represent the elective target for new therapies. Colorectal CSCs (CR-CSCs) represent a powerful tool for preclinical validation of target therapies. In particular the elucidation of the mechanisms that govern stem cell survival and differentiation appears very essential for the identification of new molecular targets in cancer therapy. Among the molecules that govern these processes there are the Bone Morphogenetic Proteins (BMP…

Settore MED/04 - Patologia GeneraleCancer stem cellBone Morphogenetic Proteins (BMPs)Colorectal cancer
researchProduct

The Marine Sponge-Derived Inorganic Polymers, Biosilica and Polyphosphate, as Morphogenetically Active Matrices/Scaffolds for the Differentiation of …

2014

The two marine inorganic polymers, biosilica (BS), enzymatically synthesized from ortho-silicate, and polyphosphate (polyP), a likewise enzymatically synthesized polymer consisting of 10 to >100 phosphate residues linked by high-energy phosphoanhydride bonds, have previously been shown to display a morphogenetic effect on osteoblasts. In the present study, the effect of these polymers on the differential differentiation of human multipotent stromal cells (hMSC), mesenchymal stem cells, that had been encapsulated into beads of the biocompatible plant polymer alginate, was studied. The differentiation of the hMSCs in the alginate beads was directed either to the osteogenic cell lineage by …

Stromal cellAlginatesPolymersCellular differentiationOsteogenesis DistractionPharmaceutical ScienceBone Morphogenetic Protein 2biosilica; polyphosphate; multipotent stromal cells; mesenchymal stem cells; alkaline phosphatase; 3D cell/tissue printing; distraction osteogenesisBone morphogenetic protein 2ChondrocyteArticleCollagen Type IGlucuronic AcidPolyphosphatesDrug Discoverymedicinemultipotent stromal cellsAnimalsHumansbiosilicaPharmacology Toxicology and Pharmaceutics (miscellaneous)lcsh:QH301-705.5Collagen Type IImesenchymal stem cells3D cell/tissue printingOsteoblastsTissue ScaffoldsChemistryHexuronic AcidsMesenchymal stem cellBiomaterialpolyphosphateCell DifferentiationAnatomyChondrogenesisAlkaline PhosphataseSilicon DioxideCell biologyPoriferamedicine.anatomical_structuredistraction osteogenesislcsh:Biology (General)Alkaline phosphataseMarine Drugs
researchProduct

In vitroandin vivoenhancement of osteogenic capacity in a synthetic BMP-2 derived peptide-coated mineralized collagen composite

2013

Enhancement of osteogenic capacity was achieved in a mineralized collagen composite, nano-hydroxyapatite/collagen (nHAC), by loading with synthetic peptides derived from BMP-2 residues 32-48 (P17-BMP-2). Rabbit marrow stromal cells (MSCs) were used in vitro to study cell biocompatibility, attachment and differentiation on the mineralized collagen composite by a cell counting kit, scanning electron microscopy (SEM) and real-time reversed transcriptase-polymerase chain reaction analysis (RT-PCR). Optimal peptide dosage (1.0 µg/mL) was obtained by RT-PCR analysis in vitro. In addition, the relative expression level of OPN and OCN was significantly upregulated on P17-BMP-2/nHAC compared with nH…

Stromal cellBiocompatibilityChemistry0206 medical engineeringMesenchymal stem cellBiomedical EngineeringMedicine (miscellaneous)02 engineering and technologyBone healing021001 nanoscience & nanotechnology020601 biomedical engineeringBone morphogenetic protein 2Molecular biologyIn vitroBiomaterialsIn vivo0210 nano-technologyBone regenerationBiomedical engineeringJournal of Tissue Engineering and Regenerative Medicine
researchProduct

Efficient differentiation of embryonic stem cells into mesodermal precursors by BMP, retinoic acid and Notch signalling

2012

The ability to direct differentiation of mouse embryonic stem (ES) cells into specific lineages not only provides new insights into the pathways that regulate lineage selection but also has translational applications, for example in drug discovery. We set out to develop a method of differentiating ES cells into mesodermal cells at high efficiency without first having to induce embryoid body formation. ES cells were plated on a feeder layer of PA6 cells, which have membrane-associated stromal-derived inducing activity (SDIA), the molecular basis of which is currently unknown. Stimulation of ES/PA6 co-cultures with Bone Morphogenetic Protein 4 (BMP4) both favoured self-renewal of ES cells and…

Stromal cellCellular differentiationMyocytes Smooth MuscleNotch signaling pathwaylcsh:MedicineDevelopmental SignalingTretinoinEmbryoid bodyBiologyCell LineMesoderm03 medical and health sciencesMice0302 clinical medicineRetinoic Acid Signaling CascadeMolecular Cell BiologyExpressió genèticaAnimalslcsh:ScienceBiologyEmbryonic Stem Cells030304 developmental biology0303 health sciencesMultidisciplinaryReceptors NotchStem Cellslcsh:RComputational BiologyCell DifferentiationNestinSignaling in Selected DisciplinesMolecular biologyEmbryonic stem cellSignaling CascadesSignaling NetworksP19 cellBone morphogenetic protein 4embryonic structuresBone Morphogenetic Proteinslcsh:QCellular TypesStromal CellsTranscriptomeCèl·lules mare030217 neurology & neurosurgeryResearch ArticleDevelopmental BiologySignal Transduction
researchProduct

Photocrosslinkable polysaccharide hydrogel composites based on dextran or pullulan-amylose blends with cytokines for a human co-culture model of huma…

2016

Although a large body of research has been devoted to biomaterial development for bone tissue engineering and related medical disciplines in the last few years, novel and optimized materials especially for bone fractures of critical sizes demand continued development. In this respect, polysaccharide-based hydrogels demonstrate beneficial properties and fulfill the main requirements for a bone tissue scaffold as they are hydrophilic, biocompatible, and biodegradable. The aim of the present study was the development of a natural polysaccharide-based scaffold material that can integrate with the host tissue and support bone regeneration. For this purpose, we prepared and investigated two polym…

Stromal cellMaterials sciencemedicine.medical_treatment0206 medical engineeringBiomedical EngineeringIngenieurwissenschaften [620]02 engineering and technologyBone tissueBone morphogenetic proteinchemistry.chemical_compoundPolymer chemistrymedicineGeneral Materials ScienceBone regenerationGrowth factorBiomaterialPullulanGeneral ChemistryGeneral Medicine021001 nanoscience & nanotechnology020601 biomedical engineering620620: Ingenieurwissenschaftenmedicine.anatomical_structurechemistrySelf-healing hydrogelsBiophysicsddc:6200210 nano-technology
researchProduct

Possible Implications for Improved Osteogenesis? The Combination of Platelet-Rich Fibrin With Different Bone Substitute Materials

2021

Bone substitute materials (BSM) are widely used in oral regeneration, but sufficient angiogenesis is crucial for osteogenesis. The combination of BSM with autologous thrombocyte concentrations such as platelet-rich fibrin (PRF) may represent a clinical approach to overcome this limitation. This study analyzes the early influence on osteoblast (HOB) in vitro. Here, four different BSM (allogeneic, alloplastic, and two of xenogeneic origin) were combined with PRF. After the incubation with osteoblasts for 24 h, cell viability, migration, and proliferation were assessed. Next, marker of proliferation, migration, and differentiation were evaluated on gene and protein levels in comparison to the …

allograftHistologylcsh:BiotechnologyBiomedical Engineeringplatelet-rich fibrinBioengineering02 engineering and technologyBone morphogenetic proteinBone morphogenetic protein 2Andrology03 medical and health sciences0302 clinical medicineTissue engineeringlcsh:TP248.13-248.65medicineViability assayxenograftoral regenerationOriginal ResearchChemistryBioengineering and BiotechnologyOsteoblast030206 dentistrybone substitute021001 nanoscience & nanotechnologyPlatelet-rich fibrinRUNX2medicine.anatomical_structuretissue engineeringosteoblastAlkaline phosphatase0210 nano-technologyBiotechnologyFrontiers in Bioengineering and Biotechnology
researchProduct

Procollagen C-proteinase Enhancer Stimulates Procollagen Processing by Binding to the C-propeptide Region Only*

2011

Background: Procollagen C-proteinase enhancer-1 (PCPE-1) is an extracellular glycoprotein that increases activity of certain zinc metalloproteinases involved in tissue development and repair. Results: PCPE-1 binds uniquely to the C-propeptide region of the procollagen molecule. Conclusion: PCPE-1 enhances proteolysis by binding solely to the procollagen C-propeptides. Significance: These data may lead to future applications in the development of antifibrotic therapies.

animal structuresGlycosylationBiologyBiochemistryBone morphogenetic protein 1Protein Structure SecondaryBone Morphogenetic Protein 103 medical and health scienceschemistry.chemical_compoundMetalloprotease0302 clinical medicineHumansBinding siteEnhancerMolecular Biology030304 developmental biologyCell Line TransformedGlycoproteinschemistry.chemical_classification0303 health sciencesMetalloproteinaseExtracellular Matrix ProteinsBinding Sitesintegumentary systemCell BiologyEnzymatic ProcessingFibrosisExtracellular MatrixProcollagen peptidaseCollagen Type IIIchemistryBiochemistry030220 oncology & carcinogenesisembryonic structuresEnzymologyCollagenGlycoproteinProtein Processing Post-TranslationalTriple helixThe Journal of Biological Chemistry
researchProduct