Search results for "Bone Morphogenetic Protein"
showing 10 items of 68 documents
Interaction of the retinoic acid signaling pathway with spicule formation in the marine sponge Suberites domuncula through activation of bone morphog…
2011
Abstract Background The formation of the spicules in siliceous sponges involves the formation of cylinder-like structures in the extraspicular space, composed of the enzyme silicatein and the calcium-dependent lectin. Scope of review Molecular cloning of the cDNAs (carotene dioxygenase, retinal dehydrogenase, and BMB-1 [bone morphogenic protein-1]) from the demosponge Suberites domuncula was performed. These tools were used to understand the retinoid metabolism in the animal by qRT-PCR, immunoblotting and TEM. Major conclusions We demonstrate that silintaphin-2, a silicatein-interacting protein, is processed from a longer-sized 15-kDa precursor to a truncated, shorter-sized 13 kDa calcium-b…
Development of a morphogenetically active scaffold for three-dimensional growth of bone cells: biosilica-alginate hydrogel for SaOS-2 cell cultivation
2013
Polymeric silica is formed from ortho-silicate during a sol–gel formation process, while biosilica is the product of an enzymatically driven bio-polycondensation reaction. Both polymers have recently been described as a template that induces an increased expression of the genes encoding bone morphogenetic protein 2 (BMP-2) and osteoprotegerin in osteoblast-related SaOS-2 cells; simultaneously or subsequently the cells respond with enhanced hydroxyapatite formation. In order to assess whether the biocompatible polymeric silica/biosilica can serve as a morphogenetically active matrix suitable for three-dimensional (3D) cell growth, or even for 3D cell bioprinting, SaOS-2 cells were embedded i…
The Deep-Sea Natural Products, Biogenic Polyphosphate (Bio-PolyP) and Biogenic Silica (Bio-Silica), as Biomimetic Scaffolds for Bone Tissue Engineeri…
2013
Bone defects in human, caused by fractures/nonunions or trauma, gain increasing impact and have become a medical challenge in the present-day aging population. Frequently, those fractures require surgical intervention which ideally relies on autografts or suboptimally on allografts. Therefore, it is pressing and likewise challenging to develop bone substitution materials to heal bone defects. During the differentiation of osteoblasts from their mesenchymal progenitor/stem cells and of osteoclasts from their hemopoietic precursor cells, a lineage-specific release of growth factors and a trans-lineage homeostatic cross-talk via signaling molecules take place. Hence, the major hurdle is to fab…
BMP7v induces cancer stem cells differentiation and enhances chemotherapy response in colorectal cancer
2014
Cancer stem cells (CSCs), characterized by high levels of ATP-binding cassette, anti-apoptotic molecules, active DNA-repair and slow replication capacities, surviving to conventional anti-cancer therapies, able to eradicate only the highly proliferating tumor cells, represent the elective target for new therapies. Colorectal CSCs (CR-CSCs) represent a powerful tool for preclinical validation of target therapies. In particular the elucidation of the mechanisms that govern stem cell survival and differentiation appears very essential for the identification of new molecular targets in cancer therapy. Among the molecules that govern these processes there are the Bone Morphogenetic Proteins (BMP…
The Marine Sponge-Derived Inorganic Polymers, Biosilica and Polyphosphate, as Morphogenetically Active Matrices/Scaffolds for the Differentiation of …
2014
The two marine inorganic polymers, biosilica (BS), enzymatically synthesized from ortho-silicate, and polyphosphate (polyP), a likewise enzymatically synthesized polymer consisting of 10 to >100 phosphate residues linked by high-energy phosphoanhydride bonds, have previously been shown to display a morphogenetic effect on osteoblasts. In the present study, the effect of these polymers on the differential differentiation of human multipotent stromal cells (hMSC), mesenchymal stem cells, that had been encapsulated into beads of the biocompatible plant polymer alginate, was studied. The differentiation of the hMSCs in the alginate beads was directed either to the osteogenic cell lineage by …
In vitroandin vivoenhancement of osteogenic capacity in a synthetic BMP-2 derived peptide-coated mineralized collagen composite
2013
Enhancement of osteogenic capacity was achieved in a mineralized collagen composite, nano-hydroxyapatite/collagen (nHAC), by loading with synthetic peptides derived from BMP-2 residues 32-48 (P17-BMP-2). Rabbit marrow stromal cells (MSCs) were used in vitro to study cell biocompatibility, attachment and differentiation on the mineralized collagen composite by a cell counting kit, scanning electron microscopy (SEM) and real-time reversed transcriptase-polymerase chain reaction analysis (RT-PCR). Optimal peptide dosage (1.0 µg/mL) was obtained by RT-PCR analysis in vitro. In addition, the relative expression level of OPN and OCN was significantly upregulated on P17-BMP-2/nHAC compared with nH…
Efficient differentiation of embryonic stem cells into mesodermal precursors by BMP, retinoic acid and Notch signalling
2012
The ability to direct differentiation of mouse embryonic stem (ES) cells into specific lineages not only provides new insights into the pathways that regulate lineage selection but also has translational applications, for example in drug discovery. We set out to develop a method of differentiating ES cells into mesodermal cells at high efficiency without first having to induce embryoid body formation. ES cells were plated on a feeder layer of PA6 cells, which have membrane-associated stromal-derived inducing activity (SDIA), the molecular basis of which is currently unknown. Stimulation of ES/PA6 co-cultures with Bone Morphogenetic Protein 4 (BMP4) both favoured self-renewal of ES cells and…
Photocrosslinkable polysaccharide hydrogel composites based on dextran or pullulan-amylose blends with cytokines for a human co-culture model of huma…
2016
Although a large body of research has been devoted to biomaterial development for bone tissue engineering and related medical disciplines in the last few years, novel and optimized materials especially for bone fractures of critical sizes demand continued development. In this respect, polysaccharide-based hydrogels demonstrate beneficial properties and fulfill the main requirements for a bone tissue scaffold as they are hydrophilic, biocompatible, and biodegradable. The aim of the present study was the development of a natural polysaccharide-based scaffold material that can integrate with the host tissue and support bone regeneration. For this purpose, we prepared and investigated two polym…
Possible Implications for Improved Osteogenesis? The Combination of Platelet-Rich Fibrin With Different Bone Substitute Materials
2021
Bone substitute materials (BSM) are widely used in oral regeneration, but sufficient angiogenesis is crucial for osteogenesis. The combination of BSM with autologous thrombocyte concentrations such as platelet-rich fibrin (PRF) may represent a clinical approach to overcome this limitation. This study analyzes the early influence on osteoblast (HOB) in vitro. Here, four different BSM (allogeneic, alloplastic, and two of xenogeneic origin) were combined with PRF. After the incubation with osteoblasts for 24 h, cell viability, migration, and proliferation were assessed. Next, marker of proliferation, migration, and differentiation were evaluated on gene and protein levels in comparison to the …
Procollagen C-proteinase Enhancer Stimulates Procollagen Processing by Binding to the C-propeptide Region Only*
2011
Background: Procollagen C-proteinase enhancer-1 (PCPE-1) is an extracellular glycoprotein that increases activity of certain zinc metalloproteinases involved in tissue development and repair. Results: PCPE-1 binds uniquely to the C-propeptide region of the procollagen molecule. Conclusion: PCPE-1 enhances proteolysis by binding solely to the procollagen C-propeptides. Significance: These data may lead to future applications in the development of antifibrotic therapies.