Search results for "Bore"

showing 10 items of 1384 documents

Proposal of a Citrus translational genomic approach for early and infield detection of Flavescence dorée in Vitis

2014

Flavescence dore´e (FD) is one of the most widely known grapevine yellows disease and one of the most unabated worldwide in the viticulture sector. In this paper, we outline a strategy for developing an integrated system of technologies to enable rapid, early disease FD detection and diagnosis. We propose the deployment of a newly developed sensor device, the differential mobility spectrometer (DMS), which has shown positive results with a similar vector-borne disease in Citrus. We have previously demonstrated that the gas chromatograph DMS (GC/DMS) can distinguish various citrus diseases, and the system may also allow detection of volatile organic compound (VOC) signals from a tree of othe…

0106 biological sciences0301 basic medicinePlant ScienceComputational biologyBiology01 natural sciences03 medical and health sciencesSettore AGR/07 - Genetica AgrariaBotanyProfile analysisPlant systemEcology Evolution Behavior and SystematicsDifferential mobility spectrometer early detection Flavescence dore´e phytoplasma qRT-PCR ELISA VitisfungiEarly diseasefood and beveragesSettore AGR/12 - Patologia VegetaleGrapevine yellowsSettore AGR/02 - Agronomia E Coltivazioni ErbaceeSettore AGR/03 - Arboricoltura Generale E Coltivazioni Arboree030104 developmental biologySettore AGR/14 - PedologiaFlavescence doréeGas chromatographyGas chromatography–mass spectrometryDisease transmission010606 plant biology & botany
researchProduct

Identification of conserved genes linked to responses to abiotic stresses in leaves among different plant species

2020

As a consequence of global climate change, certain stress factors that have a negative impact on crop productivity such as heat, cold, drought and salinity are becoming increasingly prevalent. We conducted a meta-analysis to identify genes conserved across plant species involved in (1) general abiotic stress conditions, and (2) specific and unique abiotic stress factors (drought, salinity, extreme temperature) in leaf tissues. We collected raw data and re-analysed eight RNA-Seq studies using our previously published bioinformatic pipeline. A total of 68 samples were analysed. Gene set enrichment analysis was performed using MapMan and PageMan whereas DAVID (Database for Annotation, Visuali…

0106 biological sciences0301 basic medicinePlant ScienceProtein degradationBiologyGenes Plant01 natural sciences03 medical and health scienceschemistry.chemical_compoundGene Expression Regulation PlantStress PhysiologicalSettore AGR/07 - Genetica AgrariaMYBSecondary metabolismAbscisic acidGeneAbiotic componentGeneticsabiotic-stresses differentially expressed genes leaves meta-analysis RNA-Seq transcriptomic.Abiotic stressGene Expression Profilingfungifood and beveragesPlant LeavesSettore AGR/03 - Arboricoltura Generale E Coltivazioni Arboree030104 developmental biologychemistryCinnamoyl-CoA reductaseAgronomy and Crop Science010606 plant biology & botany
researchProduct

In Vitro Regeneration of Capparis spinosa L. by Using a Temporary Immersion System

2019

Three caper (Capparis spinosa L.) biotypes grown on the Sicilian island of Salina (38&deg

0106 biological sciences0301 basic medicinePlant growthmicropropagationtemporary immersion system (TIS)Plant ScienceBiology<i>Capparis spinosa</i>01 natural sciencesCapparis spinosa03 medical and health sciencesfoodlcsh:BotanyImmersion (virtual reality)BioreactorEcology Evolution Behavior and SystematicsEcologyCapparis spinosafood and beveragesPlantForm bioreactorIn vitrofood.foodlcsh:QK1-989Settore AGR/03 - Arboricoltura Generale E Coltivazioni ArboreeHorticulture030104 developmental biologyMicropropagationShoot010606 plant biology & botanyExplant culturePlants
researchProduct

RNA-Seq analysis to investigate alternate bearing mechanism in Pistacia vera L

2018

Pistachio (Pistacia vera L.) production suffers a high level of alternate bearing. The mechanism underlying this negative phenomenon is different from other species, such as apple and olive. Pistachio produces a high number of inflorescence buds every year that in heavy cropping trees (“ON”) mostly fall during the kernel development phase, which occurs in July-August. Primary metabolites (i.e., carbohydrates) play a key role in the signaling related to inflorescence bud abscission. In this work, RNA-Seq was used as a tool to investigate transcriptome of inflorescence buds and fruits, sampled from branches with low (“OFF”) and high (“ON”) crop load. Reference based RNA-Seq analysis using Ara…

0106 biological sciences0301 basic medicineRNA-SeqHorticulture01 natural sciencesTranscriptome03 medical and health sciencesAbscissionBotanyArabidopsis thalianaInflorescence bud abscissionRNA-SeqGenePistaciabiologyfungiCrop loadfood and beveragesPrimary metabolitebiology.organism_classificationAlternate bearingSettore AGR/03 - Arboricoltura Generale E Coltivazioni Arboree030104 developmental biologyInflorescenceTranscriptome010606 plant biology & botany
researchProduct

The priming fingerprint on the plant transcriptome investigated through meta-analysis of RNA-Seq data

2020

Plants may enter into a state of alert that allows them to deploy defensive measures in a more effective way upon stress occurrence. This phenomenon is termed defense priming, and it is started in plants with a still enigmatic priming phase in which complex molecular and physiological changes occur. During the priming phase the plant transcriptome is deeply affected, but it remains largely unclear the extent of the transcriptional changes that contribute to prime the plant. In this study, we performed a meta-analysis of publicly available RNA-Seq data obtained during different priming conditions and in different plant species in order to investigate the existence of a transcriptional "primi…

0106 biological sciences0301 basic medicineRNA-SeqPlant ScienceComputational biologyHorticulture01 natural sciencesTranscriptome03 medical and health sciencesPlant immunityArabidopsisMeta-analysiGeneTranscription factorbiologyInduced resistancebiology.organism_classificationFold changeSettore AGR/03 - Arboricoltura Generale E Coltivazioni Arboree030104 developmental biologySystemic acquired resistanceDefense primingArabidopsiDefense priming . Systemic acquired resistance . Induced resistance analysis . ArabidopsisAgronomy and Crop SciencePriming (psychology)Systemic acquired resistance010606 plant biology & botanyEuropean Journal of Plant Pathology
researchProduct

Autotetraploid Emergence via Somatic Embryogenesis in Vitis vinifera Induces Marked Morphological Changes in Shoots, Mature Leaves, and Stomata

2021

Polyploidy plays an important role in plant adaptation to biotic and abiotic stresses. Alterations of the ploidy in grapevine plants regenerated via somatic embryogenesis (SE) may provide a source of genetic variability useful for the improvement of agronomic characteristics of crops. In the grapevine, the SE induction process may cause ploidy changes without alterations in DNA profile. In the present research, tetraploid plants were observed for 9.3% of ‘Frappato’ grapevine somatic embryos regenerated in medium supplemented with the growth regulators β-naphthoxyacetic acid (10 µM) and N6-benzylaminopurine (4.4 µM). Autotetraploid plants regenerated via SE without detectable changes in the …

0106 biological sciences0301 basic medicineSomatic embryogenesisQH301-705.5Biology01 natural sciencesArticlePolyploidy03 medical and health sciencesGuard cellautopolyploidy grapevine molecular analysis ploidy variability somatic embryogenesis stomatal characteristicsSettore AGR/07 - Genetica AgrariaBotanyVitismolecular analysisGenetic variabilityBiology (General)Abiotic componentploidy variabilitystomatal characteristicsfungiautopolyploidyfood and beveragesGeneral Medicinesomatic embryogenesisgrapevineChloroplastPlant LeavesSettore AGR/03 - Arboricoltura Generale E Coltivazioni Arboree030104 developmental biologyShootPlant StomataAdaptationPloidyPlant Shoots010606 plant biology & botanyCells
researchProduct

Modelling nonlinear dynamics of Crassulacean acid metabolism productivity and water use for global predictions

2021

Crassulacean acid metabolism (CAM) crops are important agricultural commodities in water-limited environments across the globe, yet modeling of CAM productivity lacks the sophistication of widely used C3 and C4 crop models, in part due to the complex responses of the CAM cycle to environmental conditions. This work builds on recent advances in CAM modeling to provide a framework for estimating CAM biomass yield and water use efficiency from basic principles. These advances, which integrate the CAM circadian rhythm with established models of carbon fixation, stomatal conductance, and the soil-plant-atmosphere continuum, are coupled to models of light attenuation, plant respiration, and bioma…

0106 biological sciences0301 basic medicineStomatal conductanceOpuntia ficus-indicawater use efficiencyPhysiologyPlant ScienceAgricultural engineering01 natural sciencescarbon assimilation03 medical and health sciencesAgaveBiomassWater-use efficiencyPhotosynthesisProductivityTranspirationBiomass (ecology)OpuntiaWaterPlant TranspirationCarbonAgave tequilanaSettore AGR/03 - Arboricoltura Generale E Coltivazioni Arboree030104 developmental biologyNonlinear DynamicsCrassulacean acid metabolismbiomaCrassulacean acid metabolismEnvironmental scienceBiomass partitioningWater use010606 plant biology & botany
researchProduct

In Vitro Rooting of Capparis spinosa L. as Affected by Genotype and by the Proliferation Method Adopted During the Multiplication Phase

2020

The in vitro rooting of three caper (Capparis spinosa L.) selected biotypes, grown in a commercial orchard on the Sicilian island of Salina (38&deg

0106 biological sciences0301 basic medicineSucrosemicropropagationPlant Science01 natural sciences03 medical and health scienceschemistry.chemical_compoundMurashige and Skoog mediumfoodAuxinBiotypecaperin vitro rootingEcology Evolution Behavior and Systematicsphotoperiodismchemistry.chemical_classificationEcologyCapparis spinosaBotanyFructosebiotypesfood.foodSettore AGR/03 - Arboricoltura Generale E Coltivazioni ArboreeHorticulture030104 developmental biologychemistryQK1-989Shoot010606 plant biology & botanyExplant culturePlants
researchProduct

UV-screening and springtime recovery of photosynthetic capacity in leaves of Vaccinium vitis-idaea above and below the snow pack

2019

International audience; Evergreen plants in boreal biomes undergo seasonal hardening and dehardening adjusting their photosynthetic capacity and photoprotection; acclimating to seasonal changes in temperature and irradiance. Leaf epidermal ultraviolet (UV)-screening by flavonols responds to solar radiation, perceived in part through increased ultraviolet-B (UV-B) radiation, and is a candidate trait to provide cross-photoprotection. At Hyytiälä Forestry Station, central Finland, we examined whether the accumulation of flavonols was higher in leaves of Vaccinium vitis-idaea L. growing above the snowpack compared with those below the snowpack. We found that leaves exposed to colder temperature…

0106 biological sciences0301 basic medicineTime FactorsPhotoinhibitionBOREALPhysiologyPlant ScienceForests01 natural sciencesPlant EpidermisAnthocyaninsSoilFlavonolsLOW-TEMPERATURESnowPhotosynthesis1183 Plant biology microbiology virologychemistry.chemical_classificationspring dehardening.CLIMATE-CHANGEbiologyChemistryTemperatureUnderstoreyHorticultureLIGHTSeasonsVacciniumUltraviolet RaysGrowing seasonPhotosynthesisDWARF SHRUB03 medical and health sciencesLEAFPHOTOSYSTEM-IIGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyVaccinium vitis-idaeaFlavonoidsSpring dehardeningPhotoprotectionSpectral qualityPhotosystem II Protein ComplexPigments Biological15. Life on landEvergreenbiology.organism_classificationPhotosynthetic capacitySUB-ARCTIC HEATHPlant Leaves030104 developmental biology13. Climate actionPhotoprotectionWINTERB RADIATIONArctic browning010606 plant biology & botany
researchProduct

Berries variability: causes and effects on the quality of ‘Cabernet Sauvignon’

2018

In this study the objective was to investigate if differences in berry size (within a population of berries from different bunches) and flowering process would lead to differences in qualitative parameters and berries variability. The trial was conducted during the 2009 vegetative season at an irrigated ‘Cabernet Sauvignon’/1103 P vineyard. At the beginning of flowering, for 100 inflorescences, all open flowers were marked by red ink while 5 days later, closed flowers were marked by black ink. Open and closed flower distribution was investigated along the rachis. At pea size, 20 marked bunches were sampled. The diameter and weight of all berries was measured and Gaussian distribution was pe…

0106 biological sciences0301 basic medicineVitis vinifera Lmedia_common.quotation_subjectHorticultureBiologyQuality01 natural sciencesFlowering proceSettore AGR/03 - Arboricoltura Generale E Coltivazioni Arboree03 medical and health sciencesHorticulture030104 developmental biologyGrapes characteristicQuality (business)Berry size010606 plant biology & botanymedia_commonActa Horticulturae
researchProduct