Search results for "Botany"

showing 10 items of 4586 documents

Loop Mediated Isothermal Amplification: Principles and Applications in Plant Virology

2020

In the last decades, the evolution of molecular diagnosis methods has generated different advanced tools, like loop-mediated isothermal amplification (LAMP). Currently, it is a well-established technique, applied in different fields, such as the medicine, agriculture, and food industries, owing to its simplicity, specificity, rapidity, and low-cost efforts. LAMP is a nucleic acid amplification under isothermal conditions, which is highly compatible with point-of-care (POC) analysis and has the potential to improve the diagnosis in plant protection. The great advantages of LAMP have led to several upgrades in order to implement the technique. In this review, the authors provide an overview r…

0106 biological sciences0301 basic medicineBst DNA polymeraseComputer scienceLoop-mediated isothermal amplificationSettore BIO/05 - ZoologiaviroidsPlant VirologyPlant ScienceReviewvirus01 natural sciences03 medical and health sciencesLAMPplant virologyprimersEcology Evolution Behavior and SystematicsEcologyviroid<i>Bst</i> DNA polymeraseBotanySettore AGR/12 - Patologia Vegetalereal-time monitoringeye diseasesDiagnosis methodsVisualizationprimer030104 developmental biologyQK1-989viruBiochemical engineeringloop-mediated isothermal amplification010606 plant biology & botanyPlants
researchProduct

C4-like photosynthesis and the effects of leaf senescence on C4-like physiology in Sesuvium sesuvioides (Aizoaceae).

2019

Sesuvium sesuvioides represents a young C4 lineage with C4-like metabolism: CO2 compensation points range between C4 and C3–C4 intermediate values, and Rubisco was detected in bundle sheath and mesophyll.

0106 biological sciences0301 basic medicineC4 photosynthesisPhysiologyPlant SciencePhotosynthetic efficiencyPhotosynthesis01 natural sciencesCarbon Cycle03 medical and health sciencesportulacelloid leaf anatomyBotanyC4-likePhotosynthesisC4 photosynthesisbiologyRuBisCOVascular bundlebiology.organism_classificationResearch PapersEnzyme assayCarbonPlant Leaves030104 developmental biologySesuviumAizoaceaebiology.proteinAizoaceaecarbon isotope valuesimmunolocalization of Rubisco and PEPCMesophyll Cells010606 plant biology & botanyPhotosynthesis and MetabolismJournal of experimental botany
researchProduct

Two maize Kip-related proteins differentially interact with, inhibit and are phosphorylated by cyclin D–cyclin-dependent kinase complexes

2017

Highlight Maize Kip-related proteins can be differentially phosphorylated by different cyclin D–cyclin-dependent kinase complexes and this influences their performance as cyclin-dependent kinase inhibitors.

0106 biological sciences0301 basic medicineCDKsPhysiologyCyclin DPlant Developmental BiologyPlant ScienceZea mays01 natural scienceslaw.inventionCyclins D03 medical and health sciencesGene Expression Regulation PlantCyclin-dependent kinaselawCyclin DPhosphorylationKinase activityKinase inhibitionCyclin-Dependent Kinase Inhibitor ProteinsPlant ProteinsbiologyKinaseKRP phosphorylationfood and beveragesICK/KRPsCyclin-Dependent Kinases030104 developmental biologyZea mays.Biochemistrybiology.proteinCyclin-dependent kinase complexRecombinant DNAPhosphorylationResearch Paper010606 plant biology & botanyCyclin-dependent kinase inhibitor proteinJournal of Experimental Botany
researchProduct

A Model for ERD2 Function in Higher Plants

2020

ER lumenal proteins have a K(H)DEL motif at their C-terminus. This is recognized by the ERD2 receptor (KDEL receptor in animals), which localizes to the Golgi apparatus and serves to capture escaped ER lumenal proteins. ERD2-ligand complexes are then transported back to the ER via COPI coated vesicles. The neutral pH of the ER causes the ligands to dissociate with the receptor being returned to the Golgi. According to this generally accepted scenario, ERD2 cycles between the ER and the Golgi, although it has been found to have a predominant Golgi localization. In this short article, we present a model for the functioning of ERD2 receptors in higher plants that explains why it is difficult t…

0106 biological sciences0301 basic medicineCOPI-Coated Vesiclescis-GolgiKDELMini ReviewPopulationPlant Sciencelcsh:Plant culture01 natural sciences03 medical and health sciencessymbols.namesakeERD2/KDEL receptorlcsh:SB1-1110Neutral phGolgi localizationeducationReceptorCOPII-vesicleeducation.field_of_studyChemistryGolgi apparatusCell biologysecretory unit030104 developmental biologyCOPI-vesiclesymbolsK(H)DEL ligandFunction (biology)010606 plant biology & botanyFrontiers in Plant Science
researchProduct

Transcriptome approach to understand the potential mechanisms inhibiting or triggering blossom-end rot development in tomato fruit in response to pla…

2017

The objectives of this study were to analyze changes in gene expression and identify candidate genes and gene networks potentially inhibiting or triggering blossom-end rot (BER) in tomatoes treated with plant growth regulators. ?Ace 55 (Vf)? tomato plants were grown in a greenhouse and sprayed with Apogee (300 mg L?1), abscisic acid (ABA) (500 mg L?1), water (control), or gibberellins 4?+?7 (GA4?+?7) (300 mg L?1) weekly after pollination. The BER incidence rate was zero in Apogee- and ABA-, medium in water-, and high in GA4?+?7-treated plants from 26 to 40 days after pollination (DAP). At 26 DAP, healthy blossom-end fruit tissue still not showing visible BER symptoms was used for transcript…

0106 biological sciences0301 basic medicineCandidate geneEstimulante de Crescimento VegetalPlant growth regulatorsPlant ScienceBiologymedicine.disease_cause01 natural sciencesGeneGiberelinaTranscriptome03 medical and health scienceschemistry.chemical_compoundAbscisic acidTomateSettore AGR/07 - Genetica AgrariaBotanyGene expressionmedicineDisorderGibberellinÁcido giberélicoHormônio VegetalAbscisic acidchemistry.chemical_classificationReactive oxygen speciesBERRegulador de crescimentofood and beveragesPlant physiologyHorticulture030104 developmental biologychemistryGibberellinProhexadione calciumAgronomy and Crop ScienceOxidative stress010606 plant biology & botanyProhexadione-calcium
researchProduct

Genetic determinants of seed protein plasticity in response to the environment in Medicago truncatula

2021

As the frequency of extreme environmental events is expected to increase with climate change, identifying candidate genes for stabilizing the protein composition of legume seeds or optimizing this in a given environment is increasingly important. To elucidate the genetic determinants of seed protein plasticity, major seed proteins from 200 ecotypes of Medicago truncatula grown in four contrasting environments were quantified after one-dimensional electrophoresis. The plasticity index of these proteins was recorded for each genotype as the slope of Finlay and Wilkinson's regression and then used for genome-wide association studies (GWASs), enabling the identification of candidate genes for d…

0106 biological sciences0301 basic medicineCandidate geneGenotypelegumesMutantVitamin UGenome-wide association studyPlant ScienceBiologymethionine recycling01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health scienceschemistry.chemical_compoundMethionineStress PhysiologicalMedicago truncatulaGeneticsStorage protein[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyGenome-wide association studies (GWAS)GenePlant Proteins2. Zero hungerchemistry.chemical_classificationGeneticsMethionineSeed Storage Proteinsfood and beveragesGlobulinsCell Biologybiology.organism_classificationMedicago truncatulaMetabolic pathwayPhenotype030104 developmental biologychemistrystorage proteins13. Climate actionplasticityMutationSeedsseedGenome-Wide Association Study010606 plant biology & botany
researchProduct

A Complex Gene Network Mediated by Ethylene Signal Transduction TFs Defines the Flower Induction and Differentiation in Olea europaea L.

2021

The olive tree (Olea europaea L.) is a typical Mediterranean crop, important for olive and oil production. The high tendency to bear fruits in an uneven manner, defined as irregular or alternate bearing, results in a significant economic impact for the high losses in olives and oil production. Buds from heavy loaded (‘ON’) and unloaded (‘OFF’) branches of a unique olive tree were collected in July and the next March to compare the transcriptomic profiles and get deep insight into the molecular mechanisms regulating floral induction and differentiation. A wide set of DEGs related to ethylene TFs and to hormonal, sugar, and phenylpropanoid pathways was identified in buds collected from ‘OFF’ …

0106 biological sciences0301 basic medicineCandidate genelcsh:QH426-470Flower differentiationFlowersBiology01 natural sciencesArticleTranscriptome03 medical and health sciencesalternate bearingGene Expression Regulation PlantFlower inductionOleaBotanyGeneticsGene Regulatory NetworksOlea europaeaGeneGenetics (clinical)Plant ProteinsfloweringPhenylpropanoidfood and beveragesCell Differentiationtranscriptome profilingEthylenesbiology.organism_classificationOlive treesPlant Breedinglcsh:Genetics030104 developmental biologylateral budOleaNGS<i>Olea europaea</i>Transcriptome010606 plant biology & botanyTranscription FactorsGenes
researchProduct

Transcriptional responses to pre-flowering leaf defoliation in grapevine berry from different growing sites, years, and genotypes

2017

Leaf removal is a grapevine canopy management technique widely used to modify the source–sink balance and/or microclimate around berry clusters to optimize fruit composition. In general, the removal of basal leaves before flowering reduces fruit set, hence achieving looser clusters, and improves grape composition since yield is generally curtailed more than proportionally to leaf area itself. Albeit responses to this practice seem quite consistent, overall vine performance is affected by genotype, environmental conditions, and severity of treatment. The physiological responses of grape varieties to defoliation practices have been widely investigated, and just recently a whole genome trans…

0106 biological sciences0301 basic medicineCanopyBerry transcriptome; Flavonoid; Grapevine; Pre-flowering defoliation; Secondary metabolite; Plant ScienceBerry transcriptomeBerryPlant Sciencelcsh:Plant cultureBiology01 natural sciencesTranscriptomeCropSecondary metabolite03 medical and health scienceschemistry.chemical_compoundAuxinSettore AGR/07 - Genetica AgrariaBotanylcsh:SB1-1110JasmonateAbscisic acidOriginal Research2. Zero hungerchemistry.chemical_classificationfungifood and beveragesRipening15. Life on landPre-flowering defoliationberry transcriptome; flavonoid; grapevine; pre-flowering defoliation; secondary metaboliteSettore AGR/03 - Arboricoltura Generale E Coltivazioni Arboree030104 developmental biologychemistryFlavonoidGrapevine010606 plant biology & botany
researchProduct

Toward the valorization of olive (Olea europaea var. europaea L.) biodiversity: horticultural performance of seven Sicilian cultivars in a hedgerow p…

2019

Abstract An intense survey of the Sicilian’s olive growing areas for autochthonous germplasm, mainly represented by centennials olive trees (Olea europaea var. europaea L.) apparently older then III centuries, started at the beginning of the 1980s and resulted in the selection of more than 150 cultivars and accessions. This germplasm was propagated in a nursery, by grafting onto seedlings of Olea europaea L., and planted in an experimental orchard, in an olive district located in the South-west of the Island, where they were evaluated for over 30 years and selected for their early bearing, high and constant productivity, as well as high oil content of the fruits and excellent chemical (olei…

0106 biological sciences0301 basic medicineCanopyGermplasmResilient cultivarsBiodiversity valorizationSowingHorticultureBiologybiology.organism_classification01 natural sciencesOlive treesSettore AGR/03 - Arboricoltura Generale E Coltivazioni ArboreeCrop03 medical and health sciencesHorticultureFree palmetta030104 developmental biologyMechanical harvestingNutraceutical foodOleaCrop efficiencyCultivarOrchard010606 plant biology & botanyScientia Horticulturae
researchProduct

Ultraviolet radiation accelerates photodegradation under controlled conditions but slows the decomposition of senescent leaves from forest stands in …

2019

Depending on the environment, sunlight can positively or negatively affect litter decomposition, through the ensemble of direct and indirect processes constituting photodegradation. Which of these processes predominate depends on the ecosystem studied and on the spectral composition of sunlight received. To examine the relevance of photodegradation for litter decomposition in forest understoreys, we filtered ultraviolet radiation (UV) and blue light from leaves of Fagus sylvatica and Bettda pendula at two different stages of senescence in both a controlled-environment experiment and outdoors in four different forest stands (Picea abies, Pagus sylvatica, Acer platanoides, Betula pendula). Co…

0106 biological sciences0301 basic medicineCanopyUltraviolet RaysPhysiologyUV-B RADIATIONPlant ScienceForestsANTHOCYANINS01 natural sciencesUV radiationBOREAL FOREST03 medical and health scienceschemistry.chemical_compoundFagus sylvaticaPhotodegradationGeneticsPhotodegradationEcosystemFinlandComputingMilieux_MISCELLANEOUS11832 Microbiology and virologyFlavonoidsSunlight[SDV.EE]Life Sciences [q-bio]/Ecology environment4112 ForestryPhotolysisbiologyChemistryTEMPERATEPLANT LITTERPicea abies15. Life on landPlant litterbiology.organism_classificationPhenolic compoundsUnderstorey light environmentSODANKYLAPlant LeavesHorticultureLIGHT030104 developmental biology13. Climate actionBetula pendulaChlorophyllPATTERNS1182 Biochemistry cell and molecular biologyLEAF-LITTER DECOMPOSITION010606 plant biology & botany
researchProduct