Search results for "Bounded function"

showing 10 items of 508 documents

On algebras of polynomial codimension growth

2016

Let A be an associative algebra over a field F of characteristic zero and let $$c_n(A), n=1, 2, \ldots $$ , be the sequence of codimensions of A. It is well-known that $$c_n(A), n=1, 2, \ldots $$ , cannot have intermediate growth, i.e., either is polynomially bounded or grows exponentially. Here we present some results on algebras whose sequence of codimensions is polynomially bounded.

Discrete mathematicsPolynomialSequenceMathematics::Commutative AlgebraGeneral Mathematics010102 general mathematicsZero (complex analysis)Field (mathematics)Codimension01 natural sciencesSettore MAT/02 - AlgebraComputational Theory and MathematicsBounded function0103 physical sciencesAssociative algebraPolynomial identities Codimensions Codimension growth010307 mathematical physics0101 mathematicsStatistics Probability and UncertaintyMathematicsSão Paulo Journal of Mathematical Sciences
researchProduct

Bounded elements of C*-inductive locally convex spaces

2013

The notion of bounded element of C*-inductive locally convex spaces (or C*-inductive partial *-algebras) is introduced and discussed in two ways: The first one takes into account the inductive structure provided by certain families of C*-algebras; the second one is linked to the natural order of these spaces. A particular attention is devoted to the relevant instance provided by the space of continuous linear maps acting in a rigged Hilbert space.

Discrete mathematicsPositive elementApplied Mathematics010102 general mathematicsMathematics - Operator AlgebrasRigged Hilbert spaceMathematics - Rings and AlgebrasLF-spaceSpace (mathematics)01 natural sciencesOperator spaceBounded operatorBounded elements Inductive limit of C*-algebras Partial *-algebras010101 applied mathematics47L60 47L40Rings and Algebras (math.RA)Bounded functionLocally convex topological vector spaceFOS: Mathematics0101 mathematicsOperator Algebras (math.OA)Mathematics
researchProduct

Property (R) for Bounded Linear Operators

2011

We introduce the spectral property (R), for bounded linear operators defined on a Banach space, which is related to Weyl type theorems. This property is also studied in the framework of polaroid, or left polaroid, operators.

Discrete mathematicsProperty (philosophy)Settore MAT/05 - Analisi MatematicaApproximation propertyGeneral MathematicsBounded functionLinear operatorsBanach spaceProperty (R) polaroid operatorsOperator theoryType (model theory)Operator normMathematicsMediterranean Journal of Mathematics
researchProduct

Einklassige Geschlechter totalpositiver quadratischer Formen in totalreellen algebraischen Zahlkörpern

1971

Abstract It is proved that totally positive quadratic forms with three or more variables and class number h = 1 exist only in a finite number of algebraic number fields. Each field allows only a finite number of such forms with bounded scale. To prove this, upper estimates for all local factors in Siegel's analytic formula are constructed by calculating explicitly numbers of solutions of quadratic congruences.

Discrete mathematicsPure mathematicsAlgebra and Number TheoryQuadratic equationBounded functionBinary quadratic formField (mathematics)Quadratic fieldAlgebraic numberCongruence relationFinite setMathematicsJournal of Number Theory
researchProduct

Polynomial codimension growth of algebras with involutions and superinvolutions

2017

Abstract Let A be an associative algebra over a field F of characteristic zero endowed with a graded involution or a superinvolution ⁎ and let c n ⁎ ( A ) be its sequence of ⁎-codimensions. In [4] , [12] it was proved that if A is finite dimensional such sequence is polynomially bounded if and only if A generates a variety not containing a finite number of ⁎-algebras: the group algebra of Z 2 and a 4-dimensional subalgebra of the 4 × 4 upper triangular matrices with suitable graded involutions or superinvolutions. In this paper we focus our attention on such algebras since they are the only finite dimensional ⁎-algebras, up to T 2 ⁎ -equivalence, generating varieties of almost polynomial gr…

Discrete mathematicsPure mathematicsAlgebra and Number TheorySubvarietySuperinvolution010102 general mathematicsSubalgebraGraded involution; Growth; Polynomial identity; SuperinvolutionTriangular matrix010103 numerical & computational mathematicsGroup algebraCodimensionPolynomial identity Graded involution Superinvolution GrowthGrowthPolynomial identity01 natural sciencesGraded involutionSettore MAT/02 - AlgebraBounded functionAssociative algebra0101 mathematicsFinite setMathematics
researchProduct

Non-self-adjoint resolutions of the identity and associated operators

2013

Closed operators in Hilbert space defined by a non-self-adjoint resolution of the identity $$\{X(\lambda )\}_{\lambda \in {\mathbb R}}$$ , whose adjoints constitute also a resolution of the identity, are studied. In particular, it is shown that a closed operator $$B$$ has a spectral representation analogous to the familiar one for self-adjoint operators if and only if $$B=\textit{TAT}^{-1}$$ where $$A$$ is self-adjoint and $$T$$ is a bounded inverse.

Discrete mathematicsPure mathematicsApplied MathematicsHilbert spaceInverseOperator theoryMathematics::Spectral TheoryNon-self-adjoint resolution of identityFunctional Analysis (math.FA)Mathematics - Functional AnalysisComputational Mathematicssymbols.namesakeIdentity (mathematics)Operator (computer programming)Computational Theory and MathematicsSettore MAT/05 - Analisi MatematicaBounded functionsymbolsFOS: MathematicsSimilarity of operatorsSelf-adjoint operatorMathematicsResolution (algebra)
researchProduct

Compact and Weakly Compact Homomorphisms on Fréchet Algebras of Holomorphic Functions

2002

We study homomorphisms between Frechet algebras of holomorphic functions of bounded type. In this setting we prove that any pointwise bounded homomorphism into the space of entire functions of bounded type is rank one. We characterize up to the approximation property of the underlying Banach space, the weakly compact composition operators on Hb(V), V absolutely convex open set.

Discrete mathematicsPure mathematicsBergman spaceApproximation propertyGeneral MathematicsBounded functionHolomorphic functionInfinite-dimensional holomorphyCompact operatorIdentity theoremBounded operatorMathematicsMathematische Nachrichten
researchProduct

Quantum extensions of semigroups generated by Bessel processes

1996

We construct a quantum extension of the Markov semigroup of the classical Bessel process of orderv≥1 to the noncommutative von Neumann algebra s(L2(0, +∞)) of bounded operators onL2(0, +∞).

Discrete mathematicsPure mathematicsBessel processMathematics::Operator AlgebrasSemigroupGeneral MathematicsNoncommutative geometryQuantum dynamical semigroupsymbols.namesakeQuantum probabilityVon Neumann algebraBounded functionsymbolsBessel functionMathematicsMathematical Notes
researchProduct

Composition operators on uniform algebras, essential norms, and hyperbolically bounded sets

2006

Let A be a uniform algebra, and let o be a self-map of the spectrum M A of A that induces a composition operator C o on A. The object of this paper is to relate the notion of "hyperbolic boundedness" introduced by the authors in 2004 to the essential spectrum of C o . It is shown that the essential spectral radius of C o , is strictly less than 1 if and only if the image of M A under some iterate o n of o is hyperbolically bounded. The set of composition operators is partitioned into "hyperbolic vicinities" that are clopen with respect to the essential operator norm. This partition is related to the analogous partition with respect to the uniform operator norm.

Discrete mathematicsPure mathematicsComposition operatorSpectral radiusApplied MathematicsGeneral MathematicsClopen setBounded functionUniform algebraEssential spectrumPartition (number theory)Operator normMathematicsTransactions of the American Mathematical Society
researchProduct

Group graded algebras and multiplicities bounded by a constant

2013

AbstractLet G be a finite group and A a G-graded algebra over a field of characteristic zero. When A is a PI-algebra, the graded codimensions of A are exponentially bounded and one can study the corresponding graded cocharacters via the representation theory of products of symmetric groups. Here we characterize in two different ways when the corresponding multiplicities are bounded by a constant.

Discrete mathematicsPure mathematicsFinite groupAlgebra and Number TheoryMathematics::Commutative AlgebraGroup (mathematics)Zero (complex analysis)Polynomial identities Graded algebras cocharactersRepresentation theorySettore MAT/02 - AlgebraSymmetric groupBounded functionAlgebra over a fieldConstant (mathematics)MathematicsJournal of Pure and Applied Algebra
researchProduct