Search results for "Bounded function"
showing 10 items of 508 documents
On algebras of polynomial codimension growth
2016
Let A be an associative algebra over a field F of characteristic zero and let $$c_n(A), n=1, 2, \ldots $$ , be the sequence of codimensions of A. It is well-known that $$c_n(A), n=1, 2, \ldots $$ , cannot have intermediate growth, i.e., either is polynomially bounded or grows exponentially. Here we present some results on algebras whose sequence of codimensions is polynomially bounded.
Bounded elements of C*-inductive locally convex spaces
2013
The notion of bounded element of C*-inductive locally convex spaces (or C*-inductive partial *-algebras) is introduced and discussed in two ways: The first one takes into account the inductive structure provided by certain families of C*-algebras; the second one is linked to the natural order of these spaces. A particular attention is devoted to the relevant instance provided by the space of continuous linear maps acting in a rigged Hilbert space.
Property (R) for Bounded Linear Operators
2011
We introduce the spectral property (R), for bounded linear operators defined on a Banach space, which is related to Weyl type theorems. This property is also studied in the framework of polaroid, or left polaroid, operators.
Einklassige Geschlechter totalpositiver quadratischer Formen in totalreellen algebraischen Zahlkörpern
1971
Abstract It is proved that totally positive quadratic forms with three or more variables and class number h = 1 exist only in a finite number of algebraic number fields. Each field allows only a finite number of such forms with bounded scale. To prove this, upper estimates for all local factors in Siegel's analytic formula are constructed by calculating explicitly numbers of solutions of quadratic congruences.
Polynomial codimension growth of algebras with involutions and superinvolutions
2017
Abstract Let A be an associative algebra over a field F of characteristic zero endowed with a graded involution or a superinvolution ⁎ and let c n ⁎ ( A ) be its sequence of ⁎-codimensions. In [4] , [12] it was proved that if A is finite dimensional such sequence is polynomially bounded if and only if A generates a variety not containing a finite number of ⁎-algebras: the group algebra of Z 2 and a 4-dimensional subalgebra of the 4 × 4 upper triangular matrices with suitable graded involutions or superinvolutions. In this paper we focus our attention on such algebras since they are the only finite dimensional ⁎-algebras, up to T 2 ⁎ -equivalence, generating varieties of almost polynomial gr…
Non-self-adjoint resolutions of the identity and associated operators
2013
Closed operators in Hilbert space defined by a non-self-adjoint resolution of the identity $$\{X(\lambda )\}_{\lambda \in {\mathbb R}}$$ , whose adjoints constitute also a resolution of the identity, are studied. In particular, it is shown that a closed operator $$B$$ has a spectral representation analogous to the familiar one for self-adjoint operators if and only if $$B=\textit{TAT}^{-1}$$ where $$A$$ is self-adjoint and $$T$$ is a bounded inverse.
Compact and Weakly Compact Homomorphisms on Fréchet Algebras of Holomorphic Functions
2002
We study homomorphisms between Frechet algebras of holomorphic functions of bounded type. In this setting we prove that any pointwise bounded homomorphism into the space of entire functions of bounded type is rank one. We characterize up to the approximation property of the underlying Banach space, the weakly compact composition operators on Hb(V), V absolutely convex open set.
Quantum extensions of semigroups generated by Bessel processes
1996
We construct a quantum extension of the Markov semigroup of the classical Bessel process of orderv≥1 to the noncommutative von Neumann algebra s(L2(0, +∞)) of bounded operators onL2(0, +∞).
Composition operators on uniform algebras, essential norms, and hyperbolically bounded sets
2006
Let A be a uniform algebra, and let o be a self-map of the spectrum M A of A that induces a composition operator C o on A. The object of this paper is to relate the notion of "hyperbolic boundedness" introduced by the authors in 2004 to the essential spectrum of C o . It is shown that the essential spectral radius of C o , is strictly less than 1 if and only if the image of M A under some iterate o n of o is hyperbolically bounded. The set of composition operators is partitioned into "hyperbolic vicinities" that are clopen with respect to the essential operator norm. This partition is related to the analogous partition with respect to the uniform operator norm.
Group graded algebras and multiplicities bounded by a constant
2013
AbstractLet G be a finite group and A a G-graded algebra over a field of characteristic zero. When A is a PI-algebra, the graded codimensions of A are exponentially bounded and one can study the corresponding graded cocharacters via the representation theory of products of symmetric groups. Here we characterize in two different ways when the corresponding multiplicities are bounded by a constant.