Search results for "C*-algebras"
showing 10 items of 37 documents
Completely positive invariant conjugate-bilinear maps on partial *-algebras
2007
The notion of completely positive invariant conjugate-bilinear map in a partial *-algebra is introduced and a generalized Stinespring theorem is proven. Applications to the existence of integrable extensions of *-representations of commutative, locally convex quasi*-algebras are also discussed.
Extensions of Representable Positive Linear Functionals to Unitized Quasi *-Algebras: A New Method
2014
In this paper we introduce a topological approach for extending a representable linear functional \({\omega}\), defined on a topological quasi *-algebra without unit, to a representable linear functional defined on a quasi *-algebra with unit. In particular, we suppose that \({\omega}\) is continuous and the positive sesquilinear form \({\varphi_\omega}\), associated with \({\omega}\), is closable and prove that the extension \({\overline{\varphi_\omega}^e}\) of the closure \({\overline{\varphi_\omega}}\) is an i.p.s. form. By \({\overline{\varphi_\omega}^e}\) we construct the desired extension.
Bounded elements of C*-inductive locally convex spaces
2013
The notion of bounded element of C*-inductive locally convex spaces (or C*-inductive partial *-algebras) is introduced and discussed in two ways: The first one takes into account the inductive structure provided by certain families of C*-algebras; the second one is linked to the natural order of these spaces. A particular attention is devoted to the relevant instance provided by the space of continuous linear maps acting in a rigged Hilbert space.
Locally convex quasi $C^*$-normed algebras
2012
Abstract If A 0 [ ‖ ⋅ ‖ 0 ] is a C ∗ -normed algebra and τ a locally convex topology on A 0 making its multiplication separately continuous, then A 0 ˜ [ τ ] (completion of A 0 [ τ ] ) is a locally convex quasi ∗-algebra over A 0 , but it is not necessarily a locally convex quasi ∗-algebra over the C ∗ -algebra A 0 ˜ [ ‖ ⋅ ‖ 0 ] (completion of A 0 [ ‖ ⋅ ‖ 0 ] ). In this article, stimulated by physical examples, we introduce the notion of a locally convex quasi C ∗ -normed algebra, aiming at the investigation of A 0 ˜ [ τ ] ; in particular, we study its structure, ∗-representation theory and functional calculus.
Quasi *-algebras and generalized inductive limits of C*-algebras
2011
Quasi-local quasi -algebras of measurable operators
2011
In this paper we will continue the analysis undertaken in [1] and in [2] our investigation on the structure of Quasi-local quasi *-algebras. In this paper it is shown that any Quasi-local quasi -algebras (A;A_0), can be represented as a class of Banach C-modules called CQ-algebra of measurable operators in Segal's sense.
Banach partial *-algebras: an overview
2019
A Banach partial $*$-algebra is a locally convex partial $*$-algebra whose total space is a Banach space. A Banach partial $*$-algebra is said to be of type (B) if it possesses a generating family of multiplier spaces that are also Banach spaces. We describe the basic properties of these objects and display a number of examples, namely, $L^p$-like function spaces and spaces of operators on Hilbert scales or lattices. Finally we analyze the important cases of Banach quasi $*$-algebras and $CQ^*$-algebras.
Bounded elements in certain topological partial *-algebras
2011
We continue our study of topological partial *algebras, focusing our attention to the interplay between the various partial multiplications. The special case of partial *-algebras of operators is examined first, in particular the link between the strong and the weak multiplications, on one hand, and invariant positive sesquilinear (ips) forms, on the other. Then the analysis is extended to abstract topological partial *algebras, emphasizing the crucial role played by appropriate bounded elements, called $\M$-bounded. Finally, some remarks are made concerning representations in terms of the so-called partial GC*-algebras of operators.
Locally Convex Quasi *-Algebras of Operators
2011
This note is mainly concerned with locally convex quasi C*-normed *-algebras which arise as completions of C*-algebras of operators under certain topologies. Their importance is made clear by the representation theory of abstract locally convex quasi C*-normed *-algebras, investigated in previous papers and whose basic aspects are also overviewed here.
Representations and derivations of quasi ∗-algebras induced by local modifications of states
2009
Abstract The relationship between the GNS representations associated to states on a quasi ∗-algebra, which are local modifications of each other (in a sense which we will discuss) is examined. The role of local modifications on the spatiality of the corresponding induced derivations describing the dynamics of a given quantum system with infinite degrees of freedom is discussed.