Search results for "CET"

showing 10 items of 6679 documents

CCDC 651347: Experimental Crystal Structure Determination

2008

Related Article: A.Cuevas, C.Kremer, L.Suescun, S.Russi, A.W.Mombru, F.Lloret, M.Julve, J.Faus|2007|Dalton Trans.||5305|doi:10.1039/b708927a

(mu~2~-Malonato-OO'O'')-tetrachloro-bis(29-dimethyl-110-phenanthroline)-cobalt(ii)-rhenium(iv) acetonitrile solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 898735: Experimental Crystal Structure Determination

2013

Related Article: A.E.Ion, S.Nica, A.M.Madalan, F.Lloret, M.Julve, M.Andruh|2013|CrystEngComm|15|294|doi:10.1039/c2ce26469b

(mu~3~-246-Tris(((2-(dimethylamino)ethyl)imino)methyl)benzene-135-triolato)-tris(hydroxy(phenyl)acetato)-tri-copper diethyl ether solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 750190: Experimental Crystal Structure Determination

2011

Related Article: P.Albores, E.Rentschler|2010|Dalton Trans.|39|5005|doi:10.1039/b925214b

(mu~3~-Oxo)-pentakis(mu~2~-22-dimethylpropanoato-OO')-aqua-(22'-bipyridine-NN')-(22-dimethylpropanoato-OO')-cobalt(ii)-di-iron(iii) acetonitrile solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 883708: Experimental Crystal Structure Determination

2013

Related Article: Julia R. Shakirova, Elena V. Grachova, Alexei S. Melnikov, Vladislav V. Gurzhiy, Sergey P. Tunik, Matti Haukka, Tapani A. Pakkanen, and Igor O. Koshevoy|2013|Organometallics|32|4061|doi:10.1021/om301100v

(mu~3~-tris(Diphenylphosphino)methane)-bis(mu~2~-eta^2^-3-hydroxy-33-diphenylprop-1-yn-1-yl)-bromo-(3-hydroxy-33-diphenylprop-1-yn-1-yl)-copper-tri-gold acetone solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 955946: Experimental Crystal Structure Determination

2013

Related Article: Julia R. Shakirova, Elena V. Grachova, Alexei S. Melnikov, Vladislav V. Gurzhiy, Sergey P. Tunik, Matti Haukka, Tapani A. Pakkanen, and Igor O. Koshevoy|2013|Organometallics|32|4061|doi:10.1021/om301100v

(mu~3~-tris(Diphenylphosphino)methane)-bis(mu~2~-eta^2^-3-hydroxy-33-diphenylprop-1-yn-1-yl)-chloro-(3-hydroxy-33-diphenylprop-1-yn-1-yl)-copper-tri-gold acetone solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1919440: Experimental Crystal Structure Determination

2019

Related Article: Jana Anhäuser, Rakesh Puttreddy, Lukas Glanz, Andreas Schneider, Marianne Engeser, Kari Rissanen, Arne Lützen|2019|Chem.-Eur.J.|25|12294|doi:10.1002/chem.201903164

ΔΔΔ)-hexakis(mu-(RP)-NN'-[tricyclo[8.2.2.247]hexadeca-1(12)46101315-hexaene-512-diylbis(41-phenylene)]bis[1-(pyridin-2-yl)methanimine])-tetra-iron(ii) octakis(trifluoromethanesulfonate) acetonitrile unknown solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

Hexakis(diethylacetamide)iron(II) hexahalorhenate(IV) ionic salts: X-ray structures and magnetic properties

2015

Two novel Fe<sup>II</sup>-Re<sup>IV</sup> compounds of general formula [Fe<sup>II</sup>(DEA)<inf>6</inf>][Re<sup>IV</sup>X<inf>6</inf>] where DEA = diethylacetamide and X = Cl (1) and Br (2) have been prepared and magnetostructurally characterised. Complexes 1 and 2 are isomorphic ionic salts that crystallise in the trigonal crystal system with space group R(-3). The rhenium(IV) ion in 1 and 2 is six-coordinate with six chloro (1) or bromo (2) ligands building a regular octahedral chromophore. The Fe<sup>II</sup> ion is also six-coordinate, and bonded to six oxygen atoms from six DEA molecules. [Fe<sup&gt…

/dk/atira/pure/subjectarea/asjc/1600/1606/dk/atira/pure/subjectarea/asjc/1600/1604Rhenium(IV) complexes/dk/atira/pure/subjectarea/asjc/2500/2505ChemistryInorganic chemistrySupramolecular chemistryIonic bondingchemistry.chemical_elementDiethylacetamideCrystal structureRheniumIron(II) complexesMagnetic susceptibilityX-ray diffractionInorganic ChemistryCrystallographyOctahedronMagnetic propertiesX-ray crystallographyMaterials ChemistryMoleculePhysical and Theoretical ChemistryPolyhedron
researchProduct

3D modeling of growth ridge and edge facet formation in 〈100〉 floating zone silicon crystal growth process

2019

Abstract A 3D quasi-stationary model for crystal ridge formation in FZ crystal growth systems for silicon is presented. Heat transfer equations for the melt and crystal are solved, and an anisotropic crystal growth model together with a free surface shape solver is used to model the facet growth and ridge formation. The simulation results for 4″ and 5″ crystals are presented and compared to experimental ridge shape data.

010302 applied physicsMaterials scienceSiliconPhysics::Opticschemistry.chemical_elementCrystal growthGeometry02 engineering and technologyEdge (geometry)021001 nanoscience & nanotechnologyCondensed Matter PhysicsRidge (differential geometry)01 natural sciencesInorganic ChemistryMonocrystalline siliconCrystalchemistryCondensed Matter::SuperconductivityFree surface0103 physical sciencesMaterials ChemistryFacet0210 nano-technologyJournal of Crystal Growth
researchProduct

Time-resolved photoisomerization of 1,1′-di-tert-butylstilbene and 1,1′-dicyanostilbene

2016

Abstract Photoisomerization of 1,1′-di-tert-butylstilbene ( 3 ) and 1,1′-dicyanostilbene ( 4 ) is monitored with stationary and broadband transient absorption spectroscopy. The electron affinity of the substituents correlates with the shift of the absorption band. The weak extinction of 3 complicates data interpretation, but comparison with earlier measured 1,1′-dimethylstilbene ( 1 ) and 1,1′-diethylstilbene ( 2 ) helps to assign transient spectra and relaxation paths. For 3 a long-lived perpendicular state P is observed with lifetime τ P  = 134 ps in acetonitrile. For 4 τ P  = 2.1 ps in acetonitrile and 27 ps in n-hexane, the difference indicating a substantial dipole moment (∼3D) of the …

010304 chemical physicsPhotoisomerizationChemistryRelaxation (NMR)Analytical chemistryGeneral Physics and Astronomy010402 general chemistry01 natural sciences0104 chemical sciencesDipolechemistry.chemical_compoundAbsorption bandElectron affinity0103 physical sciencesUltrafast laser spectroscopyPhysical and Theoretical ChemistrySpectroscopyAcetonitrileChemical Physics Letters
researchProduct

Catalytic epoxidation using dioxidomolybdenum(VI) complexes with tridentate aminoalcohol phenol ligands

2019

Reaction of the tridentate aminoalcohol phenol ligands 2,4-di-tert-butyl-6-(((2 hydroxyethyl)(methyl)amino)methyl)phenol (H2L1) and 2,4-di-tert-butyl-6-(((1-hydroxybutan-2-yl)amino)methyl)phenol (H2L2) with [MoO2(acac)2] in methanol solutions resulted in the formation of [MoO2(L1)(MeOH)] (1) and [MoO2(L2)(MeOH)] (3), respectively. In contrast, the analogous reactions in acetonitrile afforded the dinuclear complexes [Mo2O2(μ-O)2(L1)2] (2) and [Mo2O2(μ-O)2(L2)2] (4). The corresponding reactions with the potentially tetradentate ligand 3-((3,5-di-tert-butyl-2-hydroxybenzyl)(methyl)amino)propane-1,2-diol (H3L3) led to the formation of the mononuclear complex [MoO2(L3)(MeOH)] (5) in methanol whi…

010402 general chemistry01 natural sciencesMedicinal chemistryCatalysisInorganic Chemistrychemistry.chemical_compoundkatalyytitepoxidationMaterials ChemistryPhenolMoietyPhysical and Theoretical ChemistryHydrogen peroxideAcetonitrileta116010405 organic chemistryLigandmolybdenum complexSubstrate (chemistry)kompleksiyhdisteettrinuclear structure0104 chemical scienceschemistrytridentate ligandMethanolmolybdeeniInorganica Chimica Acta
researchProduct