Search results for "CIRCUIT"
showing 10 items of 936 documents
Run-time scalable NoC for FPGA based virtualized IPs
2017
The integration of virtualized FPGA-based hardware accelerators in a cloud computing is progressing from time to time. As the FPGA has limited resources, the dynamic partial reconfiguration capability of the FPGA is considered to share resources among different virtualized IPs during runtime. On the other hand, the NoC is a promising solution for communication among virtualized FPGA-based IPs. However, not all the virtualized regions of the FPGA will be active all the time. When there is no demand for virtualized IPs, the virtualized regions are loaded with blank bitstreams to save power. However, keeping active the idle components of the NoC connecting with the idle virtualized regions is …
Computer-aided analysis and design procedure for rotating induction machine magnetic circuits and windings
2018
The aim of this study is to present a new, accurate, and user-friendly software procedure for the analysis and rapid design of rotating induction machine windings, considering both the electric and the magnetic specifications of the machine itself. This procedure is a valid aid for quick first stage design without the necessity of using finite element method (FEM)-based design procedures. FEM can be used in a second design phase in order to refine the first stage results. The design procedure is hereafter outlined and some examples show its capability.
Boolean computation in plants using post-translational genetic control and a visual output signal
2018
[EN] Due to autotrophic growing capacity and extremely rich secondary metabolism, plants should be preferred targets of synthetic biology. However, developments in plants usually run below those in other taxonomic groups. In this work we engineered genetic circuits capable of logic YES, OR and AND Boolean computation in plant tissues with a visual output signal. The circuits, which are deployed by means of Agrobacterium tumefaciens, perform with the conditional activity of the MYB transcription factor Roseal from Antirrhinum majus inducing the accumulation of anthocyanins, plant endogenous pigments that are directly visible to the naked eye or accurately quantifiable by spectrophotometric a…
CRISPR-mediated strand displacement logic circuits with toehold-free DNA
2021
DNA nanotechnology, and DNA computing in particular, has grown extensively over the past decade to end with a variety of functional stable structures and dynamic circuits. However, the use as designer elements of regular DNA pieces, perfectly complementary double strands, has remained elusive. Here, we report the exploitation of CRISPR-Cas systems to engineer logic circuits based on isothermal strand displacement that perform with toehold-free double-stranded DNA. We designed and implemented molecular converters for signal detection and amplification, showing good interoperability between enzymatic and nonenzymatic processes. Overall, these results contribute to enlarge the repertoire of su…
Novel Wood Resistance Measurement Method Reducing the Initial Transient Instabilities Arising in DC Methods Due to Polarization Effects
2019
A novel method for measuring the electrical resistance in wood is presented. It is based on applying an Alternating Current (AC) to two electrodes rammed into the wood. The method reduces the transient time for value stabilization. In case of Direct Current (DC) resistance measurement methods, typically used in wood measurement, an initial transient exists, invalidating the measured value during an initial transient period. This measurement method uses an electronic circuit based on a relaxation oscillator where the wood automatically sets the oscillation frequency depending on its electrical resistance. Compared to other AC methods, this circuit greatly simplifies the measurement process, …
Optimization of the enzyme power source for a nano drug delivery system fuelled by glucose in blood plasma
2019
A unique in vivo electrical pulse generator to improve membrane permeability for drugs and simultaneously facilitate self-powered nano devices for nano drug delivery systems (NDDS) was identified. The use of an unsupported biological catalyst component of the power supply was aimed at the NDDS instead of a conventional membrane electrode assembly (MEA). Self-powered carriers of drugs and prodrugs with improved controlled release capability to target areas using substrate available in biological matrices such as glucose in blood is envisaged. The experimental application implemented prototype designed chambers allowing the entry of premixed precursors and low ohm resistance due the absence o…
Low-Power, Subthreshold Reference Circuits for the Space Environment : Evaluated with -rays, X-rays, Protons and Heavy Ions
2019
The radiation tolerance of subthreshold reference circuits for space microelectronics is presented. The assessment is supported by measured results of total ionization dose and single event transient radiation-induced effects under &gamma
Neighbor-list-free molecular dynamics on sunway TaihuLight supercomputer
2020
Molecular dynamics (MD) simulations are playing an increasingly important role in many research areas. Pair-wise potentials are widely used in MD simulations of bio-molecules, polymers, and nano-scale materials. Due to a low compute-to-memory-access ratio, their calculation is often bounded by memory transfer speeds. Sunway TaihuLight is one of the fastest supercomputers featuring a custom SW26010 many-core processor. Since the SW26010 has some critical limitations regarding main memory bandwidth and scratchpad memory size, it is considered as a good platform to investigate the optimization of pair-wise potentials especially in terms of data reusage. MD algorithms often use a neighbor-list …
Multi-application Based Network-on-Chip Design for Mesh-of-Tree Topology Using Global Mapping and Reconfigurable Architecture
2019
This paper outlines a multi-application mapping for Mesh-of-Tree (MoT) topology based Network-on-Chip (NoC) design using reconfigurable architecture. A two phase Particle Swarm Optimization (PSO) has been proposed for reconfigurable architecture to minimize the communication cost. In first phase global mapping is done by combining multiple applications and in second phase, reconfiguration is achieved by switching the cores to near by routers using multiplexers. Experimentations have been carried out for several application benchmarks and synthetic applications generated using TGFF tool. The results show significant improvement in terms of communication cost after reconfiguration.
Fault-Tolerant Network-on-Chip Design for Mesh-of-Tree Topology Using Particle Swarm Optimization
2018
As the size of the chip is scaling down the density of Intellectual Property (IP) cores integrated on a chip has been increased rapidly. The communication between these IP cores on a chip is highly challenging. To overcome this issue, Network-on-Chip (NoC) has been proposed to provide an efficient and a scalable communication architecture. In the deep sub-micron level NoCs are prone to faults which can occur in any component of NoC. To build a reliable and robust systems, it is necessary to apply efficient fault-tolerant techniques. In this paper, we present a flexible spare core placement in Mesh-of-Tree (MoT) topology using Particle Swarm Optimization (PSO) by considering IP core failures…