Search results for "COPE"

showing 10 items of 3215 documents

Nucleation of GaN nanowires grown by plasma-assisted molecular beam epitaxy: The effect of temperature

2011

Abstract The growth of GaN nanowires by means of plasma assisted molecular beam epitaxy directly on Si(1 1 1) has been investigated as a function of temperature. Statistical analysis of scanning electron microscopy pictures taken for different growth temperatures has revealed that density, diameter, length and length dispersion of nanowires were strongly dependent on temperature. Length dispersion, in particular, was found to be significant at high temperature. These features have been assigned to the different duration of the nucleation process with temperature, namely to the dependence with temperature of the time necessary for the size increase of the three-dimensional precursors up to a…

010302 applied physicsMaterials scienceScanning electron microscopeNucleationNanowireAnalytical chemistry02 engineering and technologyPlasma021001 nanoscience & nanotechnologyCondensed Matter PhysicsCritical value01 natural sciencesSize increaseInorganic ChemistryCondensed Matter::Materials ScienceCrystallography0103 physical sciencesMaterials Chemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technologyDispersion (chemistry)ComputingMilieux_MISCELLANEOUSMolecular beam epitaxy
researchProduct

Enhancement of the dielectric response through Al-substitution in La1.6Sr0.4NiO4 nickelates

2016

The structures and dielectric properties of La1.6Sr0.4Ni1−xAlxO4 (x = 0, 0.2 and 0.4) ceramics elaborated using the Pechini method were studied for the first time. The same unique tetragonal phase was found in all compounds. The lattice parameters were found using Rietveld refinement. The surface morphology characterization and elemental analysis of these samples were respectively carried out using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). A giant dielectric response was observed in these ceramics, and one dielectric relaxation was found. The substitution of nickel with aluminum results in a colossal dielectric constant value (>106). The dielectric l…

010302 applied physicsMaterials scienceScanning electron microscopeRietveld refinementGeneral Chemical EngineeringAnalytical chemistrychemistry.chemical_elementMineralogy02 engineering and technologyGeneral ChemistryDielectric021001 nanoscience & nanotechnology01 natural sciencesTetragonal crystal systemNickelchemistryvisual_art0103 physical sciencesvisual_art.visual_art_mediumDielectric lossCeramic0210 nano-technologySpectroscopyRSC Advances
researchProduct

Measuring rain energy with the employment of “Arduino”

2016

This paper presents the performances of rainfall energy harvesting through the use of a piezoelectric transducer and an Arduino-based measuring system. Diverse studies agree on the possibility of generating electricity from rainfall, but to date, a study that can measure the quantity of energy produced during rainfall is still missing. The present study begins with results obtained from laboratory researchers using piezoelectric transducers and oscilloscopes — to measure the energy produced from a single raindrop — and concludes with an ad hoc Arduino-based measuring system, aimed at measuring the actual amount of electrical energy produced by a piezoelectric transducer that is exposed to r…

010302 applied physicsMeasure (data warehouse)EngineeringEnergy harvestingbusiness.industryElectric potential energyElectrical engineering02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici021001 nanoscience & nanotechnologySettore ING-INF/01 - Elettronica01 natural sciencesSettore ING-IND/31 - ElettrotecnicaElectricity generationTransducerArduino0103 physical sciencesOscilloscope0210 nano-technologybusinessEnergy harvestingPiezoelectric sensorEnergy (signal processing)2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA)
researchProduct

2020

Time-resolved photoemission with ultrafast pump and probe pulses is an emerging technique with wide application potential. Real-time recording of nonequilibrium electronic processes, transient states in chemical reactions, or the interplay of electronic and structural dynamics offers fascinating opportunities for future research. Combining valence-band and core-level spectroscopy with photoelectron diffraction for electronic, chemical, and structural analyses requires few 10 fs soft X-ray pulses with some 10 meV spectral resolution, which are currently available at high repetition rate free-electron lasers. We have constructed and optimized a versatile setup commissioned at FLASH/PG2 that c…

010302 applied physicsMicroscopePhotonMaterials scienceResolution (electron density)Free-electron laserLaser01 natural sciences010305 fluids & plasmaslaw.inventionMomentumTime of flightlaw0103 physical sciencesAtomic physicsInstrumentationUltrashort pulseReview of Scientific Instruments
researchProduct

Marginal and internal fit evaluation of conventional metal-ceramic versus zirconia CAD/CAM crowns

2019

Background The purpose of this in vivo study was to compare the marginal and internal gap widths of monolithic zirconia crowns fabricated by CAD/CAM technique and metal-ceramic crowns fabricated by conventional technique. Material and methods 10 participants needing a single restoration were selected. Zirconia crowns using CAD/CAM technology (Group A) (n=10) and metal-ceramic crowns (Group B) (n=10) using lost wax casting technique were fabricated for each selected tooth. The marginal and internal gaps of crowns were recorded using a replica technique with light body silicone material stabilized with a regular set putty. Each replica was sectioned buccolingually and mesiodistally and then e…

010302 applied physicsOrthodonticsProsthetic DentistryMaterials scienceResearchMonolithic zirconiaCAD02 engineering and technology:CIENCIAS MÉDICAS [UNESCO]021001 nanoscience & nanotechnology01 natural sciencesMetal ceramicPaired samplesUNESCO::CIENCIAS MÉDICAS0103 physical sciencesStereo microscopeCubic zirconia0210 nano-technologyGeneral DentistryConventional techniqueJournal of Clinical and Experimental Dentistry
researchProduct

Dielectric behaviour of BaTi1-xZrxO3ceramics obtained by means of a solid state and mechanochemical synthesis

2016

ABSTRACTIn this study the comparison of dielectric behaviour of BaTi1-xZrxO3 (BTZx) ceramic samples prepared by means of a solid state and mechanochemical synthesis was presented. A single phase of perovskite structure was identified in the samples at room temperature. No significant impurities were detected in an EDS spectrum and the samples had a good stoichiometric ratio. The morphology of the investigated samples was characterized by a scanning electron microscopy (SEM). The investigation of dielectric properties of the BTZx samples within the temperature range from 140 K to 600 K was performed by means of a dielectric spectroscopy method at the frequency ranging from 0.1 Hz to 10 MHz. …

010302 applied physicsPhase transitionMaterials scienceScanning electron microscopeAnalytical chemistry02 engineering and technologyDielectricAtmospheric temperature range021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsDielectric spectroscopyImpurityvisual_art0103 physical sciencesvisual_art.visual_art_mediumCeramic0210 nano-technologyStoichiometryFerroelectrics
researchProduct

Formation of translucent nanostructured zirconia ceramics

2021

Abstract In this work the mechanisms that affect the optical transparency of nanostructured translucent ZrO2 ceramics are studied. The translucent ceramic samples were obtained from a low agglomeration nanosized powder at low pressure and low temperature sintering. Even low pressures cause structural changes and defect creation in the nanocrystals. Annealing was used to study the grain formation, structure and impact of defects. Significant changes in translucency were observed with increase in pore size. In order to further understand the defect creation, the obtained ceramics were doped with Er3+ ions and studied optically. Photoluminescence studies revealed a change in the ratio of green…

010302 applied physicsQuenchingMaterials sciencePhotoluminescenceScanning electron microscopeAnnealing (metallurgy)Sintering02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesChemical engineeringTransmission electron microscopyvisual_art0103 physical sciencesMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumCubic zirconiasense organsCeramic0210 nano-technologyJournal of the European Ceramic Society
researchProduct

Simplified feedback control system for scanning tunneling microscopy

2021

A Scanning Tunneling Microscope (STM) is one of the most important scanning probe tools available to study and manipulate matter at the nanoscale. In a STM, a tip is scanned on top of a surface with a separation of a few \AA. Often, the tunneling current between tip and sample is maintained constant by modifying the distance between the tip apex and the surface through a feedback mechanism acting on a piezoelectric transducer. This produces very detailed images of the electronic properties of the surface. The feedback mechanism is nearly always made using a digital processing circuit separate from the user computer. Here we discuss another approach, using a computer and data acquisition thr…

010302 applied physicsSuperconductivityPhysics - Instrumentation and DetectorsMaterials sciencebusiness.industrySerial communicationFOS: Physical sciencesWeyl semimetalPort (circuit theory)Instrumentation and Detectors (physics.ins-det)01 natural sciencesPiezoelectricityNoise (electronics)law.inventionCondensed Matter - Other Condensed MatterData acquisitionlawCondensed Matter::Superconductivity0103 physical sciencesOptoelectronicsScanning tunneling microscope010306 general physicsbusinessInstrumentationOther Condensed Matter (cond-mat.other)Review of Scientific Instruments
researchProduct

Optical studies of MBE-grown InN nanocolumns: Evidence of surface electron accumulation

2009

010302 applied physicsSurface (mathematics)Materials sciencebusiness.industryScanning electron microscope02 engineering and technologyElectron021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsOptics0103 physical sciencesOptoelectronics0210 nano-technologybusinessPhysical Review B
researchProduct

Stealth dicing with ultrafast Bessel beams with engineered transverse profiles

2017

International audience; We investigate high-speed glass cleaving with ultrafast laser beams with engineered transverse intensity profile. We achieve accuracy of ~ 1 µm at 25 mm/s and drastically enhance cleavability compared to standard Bessel beams.

010302 applied physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Materials scienceScanning electron microscopebusiness.industryLaser cutting02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences7. Clean energyIntensity (physics)symbols.namesakeTransverse planeOptics0103 physical sciencessymbolsPhysics::Accelerator PhysicsWafer dicing0210 nano-technologybusinessUltrashort pulseBessel functionLaser beams
researchProduct