Search results for "CROSS-LINKING"

showing 10 items of 91 documents

Production of Injectable Marine Collagen-Based Hydrogel for the Maintenance of Differentiated Chondrocytes in Tissue Engineering Applications

2020

Cartilage is an avascular tissue with limited ability of self-repair. The use of autologous chondrocyte transplants represent an effective strategy for cell regeneration

0301 basic medicineAquatic OrganismsScyphozoaCytoskeleton organizationchondrocytes02 engineering and technologychondrocytes differentiationGelatinRegenerative medicinelcsh:ChemistryMiceTissue engineeringcartilagelcsh:QH301-705.5CytoskeletonSpectroscopyGlycosaminoglycansChemistryCell DifferentiationHydrogelsdifferentiationGeneral Medicine021001 nanoscience & nanotechnologyComputer Science ApplicationsCell biologymedicine.anatomical_structurejellyfish collagenenzymatic cross-linkingchondrocyteCollagen0210 nano-technologyfood.ingredientCell Survivalregenerative medicineArticleCatalysisChondrocyteCell LineInjectionsInorganic Chemistry03 medical and health sciencesfoodmedicineAnimalsPhysical and Theoretical ChemistryMolecular BiologyTissue EngineeringRegeneration (biology)CartilageOrganic ChemistryChondrogenesisRats030104 developmental biologyGene Expression Regulationlcsh:Biology (General)lcsh:QD1-999gene expressionCattlecomposite injectable hydrogelInternational Journal of Molecular Sciences
researchProduct

Human Achilles tendon glycation and function in diabetes

2016

Diabetic patients have an increased risk of foot ulcers, and glycation of collagen may increase tissue stiffness. We hypothesized that the level of glycemic control (glycation) may affect Achilles tendon stiffness, which can influence gait pattern. We therefore investigated the relationship between collagen glycation, Achilles tendon stiffness parameters, and plantar pressure in poorly ( n = 22) and well ( n = 22) controlled diabetic patients, including healthy age-matched (45–70 yr) controls ( n = 11). There were no differences in any of the outcome parameters (collagen cross-linking or tendon stiffness) between patients with well-controlled and poorly controlled diabetes. The overall effe…

0301 basic medicineBlood GlucoseMaleGlycosylationPhysiologyFoot/physiologyDiabetes Mellitus/physiopathologychemistry.chemical_compound0302 clinical medicineGlycationta315GaitAchilles tendondiabetesBiomechanical Phenomena/physiologyta3141ta3142Middle Agedenzymatic and non-enzymatic collagen cross-linkingAchilles Tendon/physiopathologymusculoskeletal systemTendonBiomechanical Phenomenamedicine.anatomical_structureGait/physiologymusculoskeletal diseasesmedicine.medical_specialtyUrologyConnective tissue030209 endocrinology & metabolismta3111Achilles TendonGlycemic Index/physiology03 medical and health sciencesPhysiology (medical)Diabetes mellitusJoint capsulemedicineDiabetes MellitusHumansPentosidinebusiness.industryFootForefootmedicine.diseasefoot ulcerSurgerybody regionsBlood Glucose/physiology030104 developmental biologyCross-Sectional StudieschemistryGlycemic IndexAchilles tendon mechanicsEnzymatic and nonenzymatic collagen cross-linkingbusiness
researchProduct

Transmembrane signaling and cytoplasmic signal conversion by dimeric transmembrane helix 2 and a linker domain of the DcuS sensor kinase

2020

Transmembrane (TM) signaling is a key process of membrane-bound sensor kinases. The C4-dicarboxylate (fumarate) responsive sensor kinase DcuS of Escherichia coli is anchored by TM helices TM1 and TM2 in the membrane. Signal transmission across the membrane relies on the piston-type movement of the periplasmic part of TM2. To define the role of TM2 in TM signaling, we use oxidative Cys cross-linking to demonstrate that TM2 extends over the full distance of the membrane and forms a stable TM homodimer in both the inactive and fumarate-activated state of DcuS. An S186xxxGxxxG194 motif is required for the stability and function of the TM2 homodimer. The TM2 helix further extends on the periplas…

0301 basic medicineCytoplasmGpA glycophorin AC4DC C4-dicarboxylateCL cross-linkingpiston-typeMBP maltose-binding proteinBiochemistry03 medical and health sciencesProtein DomainsDcuSEscherichia coli(Gly)xxx(Gly) motifMolecular Biologysensor kinasefumarate030102 biochemistry & molecular biologyChemistryEscherichia coli ProteinsCell MembraneHistidine kinaseGene Expression Regulation BacterialCell BiologyPeriplasmic spacelinkerTransmembrane proteinoxidative Cys cross-linkingTransmembrane domain030104 developmental biologyMembrane proteinProtein kinase domainHelixBiophysicsProtein MultimerizationProtein Kinasestransmembrane signalingLinkerResearch ArticleTM transmembraneJournal of Biological Chemistry
researchProduct

An Assay to Determine Mechanisms of Rapid Autoantibody-Induced Neurotransmitter Receptor Endocytosis and Vesicular Trafficking in Autoimmune Encephal…

2019

N-Methyl-D-aspartate (NMDA) receptors (NMDARs) are among the most important excitatory neurotransmitter receptors in the human brain. Autoantibodies to the human NMDAR cause the most frequent form of autoimmune encephalitis involving autoantibody-mediated receptor cross-linking and subsequent internalization of the antibody-receptor complex. This has been deemed to represent the predominant antibody effector mechanism depleting the NMDAR from the synaptic and extra-synaptic neuronal cell membrane. To assess in detail the molecular mechanisms of autoantibody-induced NMDAR endocytosis, vesicular trafficking, and exocytosis we transiently co-expressed rat GluN1-1a-EGFP and GluN2B-ECFP alone or…

0301 basic medicineEndosomeautoantibodiesmedia_common.quotation_subjectN-Methyl-D-aspartate receptorsEndocytosisExocytosislcsh:RC346-42903 medical and health sciences0302 clinical medicineNeurotransmitter receptorendocytosisInternalizationReceptorlcsh:Neurology. Diseases of the nervous systemmedia_commonOriginal ResearchChemistryAutoantibodyautoimmune encephalitisCell biology030104 developmental biologynervous systemNeurologyRabNeurology (clinical)exocytosisvesicular trafficking030217 neurology & neurosurgerycross-linkingFrontiers in neurology
researchProduct

Synchronizing the release rates of salicylate and indomethacin from degradable chitosan hydrogel and its optimization by definitive screening design.

2018

Abstract Three types of ionically crosslinked (with citric acid) chitosan discs were loaded with the highly water- soluble drug, sodium salicylate (SS) and the poorly water-soluble drug, indomethacin (Ind). In separate experiments the hydrated discs were immersed in a de-crosslinking solution comprising of different concentrations of calcium chloride, which induced a controlled erosion of the discs, a process which was optimized to synchronize the release rates of the two drugs over a predetermined period of time. The optimization was accomplished by manipulating six factors: chitosan MW, its amount in the formulation, the concentration of the crosslinker agent, the concentration of the de-…

3003DrugSynchronized release ratemedia_common.quotation_subjectIndomethacinPharmaceutical Sciencechemistry.chemical_elementmacromolecular substances02 engineering and technologyCalciumTriggered erosionCitric AcidChitosan03 medical and health scienceschemistry.chemical_compoundCrosslinked chitosan0302 clinical medicineDrug Delivery SystemsScreening designMultifactorial definitive screening designDissolutionSodium salicylatemedia_commonChitosanChromatographytechnology industry and agricultureHydrogelsCrosslinked chitosanDual drug platform021001 nanoscience & nanotechnologyDrug LiberationCross-Linking Reagentschemistry030220 oncology & carcinogenesisDrug Design0210 nano-technologyCitric acidSalicylic AcidEuropean journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences
researchProduct

Characterization of particle morphology of biochanin A molecularly imprinted polymers and their properties as a potential sorbent for solid-phase ext…

2014

Abstract Molecularly imprinted polymers (MIPs) with biochanin A as a template were obtained using a bulk polymerization with non-covalent imprinting approach. The polymers were prepared in acetonitrile as porogen, using ethylene glycol dimethacrylate (EDMA) as cross-linking agent. The synthesis, with an application of 1′,1′-azobis(cyclohexanecarbonitrile) (ACHN) as an initiator, has been performed thermally. During the synthesis process the effect of different functional monomers such as methacrylic acid (MAA), acrylamide (AA) and 4-vinylpyridine (4-VP) was investigated. The application of nitrogen sorption porosimetry, scanning electron microscopy (SEM), and Fourier transform infrared spec…

AcetonitrilesMaterials scienceNitrogenPolymersPyridinesEthylene glycol dimethacrylateBioengineeringPolymerizationBiochanin ABiomaterialschemistry.chemical_compoundSpectroscopy Fourier Transform Infraredsolid-phase extractionSolid phase extractionFourier transform infrared spectroscopyChromatography High Pressure Liquidchemistry.chemical_classificationphytoestrogensAcrylamideChromatographySolid Phase ExtractionMolecularly imprinted polymerPolymerGenisteinIsoflavonesCross-Linking ReagentschemistryMethacrylic acidMechanics of MaterialsadsorptionMicroscopy Electron ScanningMethacrylatesmolecular imprintingMolecular imprintingNuclear chemistryMaterials Science & Engineering C-Materials for Biological Applications
researchProduct

Biocompatibility of various collagen membranes in cultures of human PDL fibroblasts and human osteoblast-like cells

2004

The aim of the present study was to evaluate the biocompatibility of differently cross-linked collagen membranes in cultures of human PDL fibroblasts and human osteoblast-like cells. Four collagen membranes [BioGide (BG), BioMend (BM), Ossix (OS) and TutoDent (TD)] were tested. Cells plated on culture dishes (CD) served as positive controls. Six specimens of each membrane were incubated with (1) human PDL fibroblasts [2 x 10(4) cells] (n=24), and (2) human osteoblast-like cells (SaOs-2) [2 x 10(4) cells] (n=24) under standardized conditions. After 7 days, adherent cells were stained with hematoxylin and counted using a reflected light microscope and the cell density per square millimeter wa…

AdultBiocompatibilityPeriodontal LigamentFibrillar CollagensCellH&E stainBiocompatible MaterialsCell morphologyStatistics NonparametricMaterials TestingCell AdhesionTumor Cells CulturedmedicineHumansPeriodontal fiberCell adhesionCells CulturedOsteoblastsChemistryMembranes ArtificialOsteoblastFibroblastsMolecular biologyCross-Linking Reagentsmedicine.anatomical_structureMembraneImmunologyGuided Tissue Regeneration PeriodontalMicroscopy Electron ScanningFemaleOral SurgeryClinical Oral Implants Research
researchProduct

Lower strength of the human posterior patellar tendon seems unrelated to mature collagen cross-linking and fibril morphology

2009

The human patellar tendon is frequently affected by tendinopathy, but the etiology of the condition is not established, although differential loading of the anterior and posterior tendon may be associated with the condition. We hypothesized that changes in fibril morphology and collagen cross-linking would parallel differences in material strength between the anterior and posterior tendon. Tendon fascicles were obtained from elective ACL surgery patients and tested micromechanically. Transmission electron microscopy was used to assess fibril morphology, and collagen cross-linking was determined by HPLC and calorimetry. Anterior fascicles were markedly stronger (peak stress: 54.3 ± 21.2 vs.…

AdultMaleCollagen cross linkingPhysiologybusiness.industryFibrillar CollagensPatellar ligamentAnatomyFibrilmedicine.diseasePatellar tendonTendonStructure-Activity RelationshipCross-Linking Reagentsmedicine.anatomical_structurePatellar LigamentTensile StrengthPhysiology (medical)HumansMedicineStress MechanicalTendinopathybusinessFibril morphologyJumper's kneeJournal of Applied Physiology
researchProduct

Assessment of DNA-protein crosslinks in the course of aging in two mouse strains by use of a modified alkaline filter elution applied to whole tissue…

1999

Abstract Two different mouse strains have been used for determination of age dependence of DNA-protein crosslinks by alkaline filter elution: a long lived laboratory strain, NMRI and an accelerated senescence-prone, short lived strain, SAMP1. Five organs were selected: Brain, kidney, lung, heart and liver. Remarkably in all five organs of short lived SAMP1 mice crosslinks increased significantly with age. In NMRI however only in brain and heart a significant rise in old age has been observed, while in the other organs there was no increase in DNA-protein crosslinking. Appreciable mitotic activity which is lacking in brain and heart could be the reason for this difference. Poor repair in all…

Agingmedicine.medical_specialtyProtein dnaSodium ChlorideBiologyMiceInternal medicinemedicineAnimalsHumansMitosisKidneyLungStrain (chemistry)Life spanElutionProteinsDNACross-Linking Reagentsmedicine.anatomical_structureEndocrinologyBiochemistryFemaleEndopeptidase KHeLa CellsDevelopmental BiologyMechanisms of Ageing and Development
researchProduct

Beads of Acryloylated Polyaminoacidic Matrices Containing 5-Fluorouracil for Drug Delivery

2002

Spherical polymeric microparticles have been prepared by a reverse phase suspension polymerization technique. The starting polymer was alpha,beta-poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA), partially derivatized with glycidylmethacrylate (GMA). PHEA-GMA copolymer (PHG) was crosslinked in the presence of N,N'-dimethylacrylamide (DMAA) or N,N'-ethylenebisacrylamide (EBA). 5-fluorouracil was incorporated into PHG-DMAA or PHG-EBA beads both during and after the crosslinking process. Swelling studies revealed a high affinity toward aqueous medium, influenced by the presence of 5-fluorouracil. The in vitro release study showed that the release rate depends on the chemical structure of the beads…

Antimetabolites AntineoplasticMaterials scienceChemical structurePharmaceutical Sciencemacromolecular substancesExcipientsDrug Delivery SystemsPhase (matter)Polymer chemistryCopolymermedicineParticle Sizechemistry.chemical_classificationCalorimetry Differential ScanningAqueous mediumdigestive oral and skin physiologytechnology industry and agricultureProteinsHydrogelsGeneral MedicinePolymerHydrogen-Ion ConcentrationMicrospheresMolecular WeightKineticsCross-Linking ReagentsAcrylateschemistryDrug deliveryMicroscopy Electron ScanningIndicators and ReagentsSuspension polymerizationFluorouracilSwellingmedicine.symptomDrug Delivery
researchProduct