Search results for "Calculus"
showing 10 items of 617 documents
Metric regularity and subdifferential calculus in Banach spaces
1995
In this paper we give verifiable conditions in terms of limiting Frechet subdifferentials ensuring the metric regularity of a multivalued functionF(x)=−g(x)+D. We apply our results to the study of the limiting Frechet subdifferential of a composite function defined on a Banach space.
A Note on the Measure of Solvability
2004
PI-algebras with slow codimension growth
2005
Let $c_n(A),\ n=1,2,\ldots,$ be the sequence of codimensions of an algebra $A$ over a field $F$ of characteristic zero. We classify the algebras $A$ (up to PI-equivalence) in case this sequence is bounded by a linear function. We also show that this property is closely related to the following: if $l_n(A), \ n=1,2,\ldots, $ denotes the sequence of colengths of $A$, counting the number of $S_n$-irreducibles appearing in the $n$-th cocharacter of $A$, then $\lim_{n\to \infty} l_n(A)$ exists and is bounded by $2$.
A Riemann manifold structure of the spectra of weighted algebras of holomorphic functions
2009
[EN] In this paper we give general conditions on a countable family V of weights on an unbounded open set U in a complex Banach space X such that the weighted space HV (U) of holomorphic functions on U has a Frechet algebra structure. For such weights it is shown that the spectrum of HV(U) has a natural analytic manifold structure when X is a symmetrically regular Banach space, and in particular when X = C-n. (C) 2009 Elsevier Ltd. All rights reserved.
A non-linear version of Hunt-Lion's theorem from the point of view of T-accretivity
1992
In the classical topological context, Dellacherie [10] has given a non-linear version of Hunt's theorem characterizing the proper kernels verifying the complete maximum principle as those closing a submarkovian resolvent. In this paper we study the relation between this non-linear version of Hunt's theorem and T-accretivity.
The Monadic Quantifier Alternation Hierarchy over Grids and Graphs
2002
AbstractThe monadic second-order quantifier alternation hierarchy over the class of finite graphs is shown to be strict. The proof is based on automata theoretic ideas and starts from a restricted class of graph-like structures, namely finite two-dimensional grids. Considering grids where the width is a function of the height, we prove that the difference between the levels k+1 and k of the monadic hierarchy is witnessed by a set of grids where this function is (k+1)-fold exponential. We then transfer the hierarchy result to the class of directed (or undirected) graphs, using an encoding technique called strong reduction. It is notable that one can obtain sets of graphs which occur arbitrar…
Behavior of holomorphic mappings on $p$-compact sets in a Banach space
2015
We study the behavior of holomorphic mappings on p-compact sets in Banach spaces. We show that the image of a p-compact set by an entire mapping is a p-compact set. Some results related to the localization of p-compact sets in the predual of homogeneous polynomials are also obtained. Finally, the "size" of p-compactness of the image of the unit ball by p-compact linear operators is studied.
Functional Calculus and Fredholm Criteria for Boundary Value Problems on Noncompact Manifolds
1992
A Boutet de Monvel type calculus is developed for boundary value problems on (possibly) noncompact manifolds. It is based on a class of weighted symbols and Sobolev spaces. If the underlying manifold is compact, one recovers the standard calculus. The following is proven:
Multiplicative Decompositions of Holomorphic Fredholm Functions and ψ*-Algebras
1999
In this article we construct multiplicative decompositions of holomorphic Fredholm operator valued functions on Stein manifolds with values in various algebras of differential and pseudo differential operators which are submultiplicative ψ* - algebras, a concept introduced by the first author. For Fredholm functions T(z) satisfying an obvious topological condition we. Prove (0.1) T(z) = A(z)(I + S(z)), where A(z) is holomorphic and invertible and S(z) is holomorphic with values in an “arbitrarily small” operator ideal. This is a stronger condition on S(z) than in the authors' additive decomposition theorem for meromorphic inverses of holomorphic Fredholm functions [12], where the smallness …
Linearization of holomorphic mappings on fully nuclear spaces with a basis
1994
In [13] Mazet proved the following result.If U is an open subset of a locally convex space E then there exists a complete locally convex space (U) and a holomorphic mapping δU: U→(U) such that for any complete locally convex space F and any f ɛ ℋ (U;F), the space of holomorphic mappings from U to F, there exists a unique linear mapping Tf: (U)→F such that the following diagram commutes;The space (U) is unique up to a linear topological isomorphism. Previously, similar but less general constructions, have been considered by Ryan [16] and Schottenloher [17].