Search results for "Caprolactone"

showing 10 items of 72 documents

Non-hindered ansasamarocenes, versatile catalysts for diene/olefin/polar monomer copolymerisations. What is really the active species?

2002

Abstract Catalytic systems containing an ansabiscyclopentadienyllanthanide core and lithium and/or magnesium salts are obtained by reaction of the chloride precursors with allyllithium. These allyl complexes lead to the same active species which polymerises 1,3-dienes, copolymerises 1,3-dienes and α-olefin or α,ω-dienes or allows the controlled diblock polyisoprene/polycaprolactone copolymerisation. The exact nature of this active species and of the allyl precursors is investigated here.

Olefin fiberDieneOrganic Chemistrychemistry.chemical_elementBiochemistryChlorideCatalysisInorganic Chemistrychemistry.chemical_compoundMonomerchemistryPolymerizationPolycaprolactoneMaterials ChemistrymedicineOrganic chemistryLithiumPhysical and Theoretical Chemistrymedicine.drugJournal of Organometallic Chemistry
researchProduct

Effect of Streptomyces coelicolor M145 cell immobilization on actinorhodin production

2016

Non previsto

PCL- PLA-oxygen plasma.S. coelicolor immobilizationactinorhodin productionpolycaprolactone/polyethylene glycol membrane
researchProduct

Modification of EVOH copolymers with e-caprolactone: synthesis and compatibilization effects in PE/PVC blends

2001

Polyethylene-polycaprolactone graft copolymers with different chemical structures (i.e. different number and length of PCL grafts and molecular weight of PE backbone) were synthesized from various EVOH copolymers and e-caprolactone, using Aluminum isopropoxide as catalyst, and were tested for their compatibilizing capability in PE/PVC blends. PE and PCL segments in the graft copolymers were found completely immiscible, while PCL segments of the graft copolymers were found completely miscible with PVC. When graft copolymers were added to PE/PVC blends they proved to be good agents for the dispersion of PVC phase in the PE matrix. SEM showed also improved adhesion between the dispersed PVC ph…

POLYETHYLENEMaterials sciencePolymers and PlasticscompatibilizationOrganic ChemistryINCOMPATIBLE POLYMERSConcentration effectCompatibilizationPolyethyleneCondensed Matter PhysicsGraftingchemistry.chemical_compoundPolyvinyl chloridecompatibilization; polymer blends; ethylene-co-vinyl alcoholBLOCK-COPOLYMERSPOLYMER BLENDSSettore ING-IND/22 - Scienza E Tecnologia Dei Materialichemistryethylene-co-vinyl alcoholMaterials ChemistryCopolymerPolymer blendComposite materialCaprolactonepolymer blends
researchProduct

Preparation and characterization of PCL/GO-g-PEG biocomposite nanofiber scaffolds

2016

Biocomposite nanofiber scaffolds of polycaprolactone (PCL) with different graphene oxide surface grafted with poly(ethylene glycol) (GO-g-PEG) concentrations were prepared by electrospinning. Morphological, mechanical as well as wettability characterization were carried out. Results showed that the average diameter of PLA/GO-g-PEG electrospun nanofibers increased by increasing the filler content. GO-g-PEG enhanced the electrospun PCL hydrophilicity as well as the Young modulus, in particular at low GO-g-PEG concentrations.

PolycaprolactonePolyethylene glycolElectrospinningTissue engineeringGraphene oxide
researchProduct

Core–shell-type multiarm star polyethylenimine-block-poly(ɛ-caprolactone): Synthesis and guest encapsulation potential

2006

Novel multiarm star copolymers with poly(e-caprolactone) (PCL) as the arms and hyperbranched polyethylenimine (HPEI) as the core have been successfully prepared by the tin(II) 2-ethylhexanoate catalyzed ring-opening polymerization of e-caprolactone (CL) with HPEI used directly as a macroinitiator. Not only primary but also secondary amine groups of HPEI participate in initiating the ring-opening polymerization of CL with almost 100% initiation efficiency. The average degree of polymerization of the PCL arms can be controlled by the feed ratio of the monomers to the initiating sites. Because of the polarity difference of the PCL arms and HPEI core, the obtained multiarm star polymers display…

PolyethyleniminePolymers and PlasticsOrganic ChemistryDegree of polymerizationRing-opening polymerizationchemistry.chemical_compoundMonomerchemistryPolymerizationPolymer chemistryMaterials ChemistryCopolymerAmine gas treatingCaprolactoneJournal of Polymer Science Part A: Polymer Chemistry
researchProduct

Covalently Binding of Bovine Serum Albumin to Unsaturated Poly(Globalide-Co-ε-Caprolactone) Nanoparticles by Thiol-Ene Reactions.

2019

When nanoparticles (NPs) are introduced to a biological fluid, different proteins (and other biomolecules) rapidly get adsorbed onto their surface, forming a protein corona capable of giving to the NPs a new "identity" and determine their biological fate. Protein-nanoparticle conjugation can be used in order to promote specific interactions between living systems and nanocarriers. Non-covalent conjugates are less stable and more susceptible to desorption in biological media, which makes the development of engineered nanoparticle surfaces by covalent attachment an interesting topic. In this work, the surface of poly(globalide-co-e-caprolactone) (PGlCL) nanoparticles containing double bonds i…

Polymers and PlasticsNanoparticleBioengineering02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialschemistry.chemical_compoundLactonesMaterials ChemistryAnimalsHumansBovine serum albuminParticle SizeCaproateschemistry.chemical_classificationbiologyThiol-ene reactionBiomoleculeSerum Albumin Bovine021001 nanoscience & nanotechnologyCombinatorial chemistry0104 chemical scienceschemistryCovalent bondbiology.proteinNanoparticlesCattleNanocarriers0210 nano-technologyCaprolactoneBiotechnologyConjugateHeLa CellsMacromolecular bioscience
researchProduct

Lanthanides benzimidinates: initiators or real catalysts for theɛ-caprolactone polymerization

2000

Polymers and PlasticsOrganic ChemistryCationic polymerizationSolution polymerizationRing-opening polymerizationchemistry.chemical_compoundLiving free-radical polymerizationchemistryPolymerizationPolymer chemistryMaterials ChemistryLiving polymerizationOrganic chemistryIonic polymerizationCaprolactoneMacromolecular Rapid Communications
researchProduct

Synthesis of SBC, SC and BC block copolymers based on polystyrene (S), polybutadiene (B) and a crystallizable poly(ɛ-caprolactone) (C) block

1996

The sequential anionic polymerization of polystyrene-block-polybutadiene-block-poly(e-caprolactone) (SBC) triblock copolymers as well as polystyrene-block-poly(e-caprolactone) (SC) and polybutadiene-block-poly(e-caprolactone) (BC) diblock copolymers was achieved in benzene. To initiate the polymerization of the highly reactive e-caprolactone, the nucleophilicity of the carbanion has to be reduced. For this purpose 1,1-diphenylethylene (DPE) was used. To avoid inter- and intramolecular transesterification reactions of the growing caprolactone block, the reaction time of this monomer in the block copolymers was strictly controlled. The reaction between polybutadienyl anions and DPE is too slo…

Polymers and PlasticsOrganic ChemistryChain transferCondensed Matter PhysicsStyrenechemistry.chemical_compoundAnionic addition polymerizationPolybutadienechemistryPolymerizationPolymer chemistryMaterials ChemistryCopolymerPolystyrenePhysical and Theoretical ChemistryCaprolactoneMacromolecular Chemistry and Physics
researchProduct

Phenoxyamidine Zn and Al Complexes: Synthesis, Characterization, and Use in the Ring-Opening Polymerization of Lactide

2019

International audience; Herein we report the synthesis of new ditopic ligands, which consist of a phenoxy group and N,N,N'trisubstituted amidines linked by a methylene spacer (L1-L4). Their coordination chemistry has been studied/investigated with Zn(II) and Al(III). Alkane elimination route between the phenol-amidine proligands (L1H-L4H) and Et2Zn led to dinuclear complexes [(L1-L4)ZnEt]2 (1a-4a) in which the Zn centers are chelated by phenoxyamidine ligands and bridged through the oxygen atom of the phenoxy groups. Salt metathesis reaction between two equivalents of the sodium amidine phenate L1Na and ZnCl2 led to a bis-chelate chiral spiro-complex (L12Zn) 1a'. Analogous alkane eliminatio…

STRUCTURAL-CHARACTERIZATIONchemistry.chemical_elementCATALYSTSZinc010402 general chemistryLIGANDS SYNTHESIS01 natural sciencesRing-opening polymerizationCoordination complexCatalysisInorganic Chemistrychemistry.chemical_compoundZINCIMINE LIGANDSGroup (periodic table)Polymer chemistry[CHIM.COOR]Chemical Sciences/Coordination chemistryPhysical and Theoretical ChemistryMethyleneCYCLIC ESTERSALUMINUM COMPLEXESchemistry.chemical_classificationEPSILON-CAPROLACTONELactide010405 organic chemistryOrganic ChemistryGROUP-4 METAL-COMPLEXES[CHIM.CATA]Chemical Sciences/CatalysisImine ligands0104 chemical scienceschemistryINITIATORSGROUP-4 METAL-COMPLEXES; ALUMINUM COMPLEXES; EPSILON-CAPROLACTONE; LIGANDS SYNTHESIS; IMINE LIGANDS; STRUCTURAL-CHARACTERIZATION; CYCLIC ESTERS; ZINC; CATALYSTS; INITIATORS
researchProduct

Electrospun PHEA-PLA/PCL Scaffold for Vascular Regeneration: A Preliminary in Vivo Evaluation

2017

Abstract Background There is increasing interest in the development of vessel substitutes, and many studies are currently focusing on the development of biodegradable scaffolds capable of fostering vascular regeneration. We tested a new biocompatible and biodegradable material with mechanical properties similar to those of blood vessels. Methods The material used comprises a mixture of α,β-poly(N-2-hydroxyethyl)- d,l -aspartamide (PHEA) and polylactic acid (PLA), combined with polycaprolactone (PCL) by means of electrospinning technique. Low-molecular-weight heparin was also linked to the copolymer. A tubular PHEA-PLA/PCL sample was used to create an arteriovenous fistula in a pig model wit…

ScaffoldMaterials scienceBiocompatibilityPolymersSwinePolyesters0206 medical engineering02 engineering and technologySettore MED/22 - Chirurgia VascolareNeovascularizationchemistry.chemical_compoundPolylactic acidBlood vessel prosthesismedicineAnimalsTransplantationRegeneration (biology)Bioabsorbable scaffold Bioengineered vascular scaffold Experimental surgery021001 nanoscience & nanotechnology020601 biomedical engineeringBlood Vessel ProsthesisSettore MED/18 - Chirurgia GeneraleCoagulative necrosischemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoPolycaprolactoneSurgerymedicine.symptomPeptides0210 nano-technologyBiomedical engineeringTransplantation Proceedings
researchProduct