Search results for "Cell Cycle Protein"
showing 10 items of 131 documents
Centriolar satellites expedite mother centriole remodeling to promote ciliogenesis
2023
Centrosomes are orbited by centriolar satellites, dynamic multiprotein assemblies nucleated by Pericentriolar material 1 (PCM1). To study the requirement for centriolar satellites, we generated mice lacking PCM1, a crucial component of satellites. Pcm1−/− mice display partially penetrant perinatal lethality with survivors exhibiting hydrocephalus, oligospermia, and cerebellar hypoplasia, and variably expressive phenotypes such as hydronephrosis. As many of these phenotypes have been observed in human ciliopathies and satellites are implicated in cilia biology, we investigated whether cilia were affected. PCM1 was dispensable for ciliogenesis in many cell types, whereas Pcm1−/− multiciliated…
Role of nuclear glutathione as a key regulator of cell proliferation.
2009
Glutathione (GSH) is essential for survival of eukaryotic but not in prokaryotic cells. Its functions in nucleated cells are far from being known. In fact GSH plays an important role in cell proliferation. The purpose of the present review is to summarize the relationship between glutathione and the important events that take place in the nucleus during the cell cycle. Most GSH co-localizes with nuclear DNA when cells are proliferating. However, when cells were confluent no differences between nucleus and cytoplasm could be seen. A number of relevant nuclear proteins are strictly dependent on nuclear redox status. For instance, we found that telomerase is regulated by shifts in glutathione …
Epigenetic Transcriptional Regulation of the Growth Arrest-Specific gene 1 (Gas1) in Hepatic Cell Proliferation at Mononucleosomal Resolution
2011
Background Gas1 (growth arrest-specific 1) gene is known to inhibit cell proliferation in a variety of models, but its possible implication in regulating quiescence in adult tissues has not been examined to date. The knowledge of how Gas1 is regulated in quiescence may contribute to understand the deregulation occurring in neoplastic diseases. Methodology/Principal Findings Gas1 expression has been studied in quiescent murine liver and during the naturally synchronized cell proliferation after partial hepatectomy. Chromatin immunoprecipitation at nucleosomal resolution (Nuc-ChIP) has been used to carry out the study preserving the in vivo conditions. Transcription has been assessed at real …
Proliferation state and polo-like kinase1 dependence of tumorigenic colon cancer cells.
2012
Abstract Tumor-initiating cells are responsible for tumor maintenance and relapse in solid and hematologic cancers. Although tumor-initiating cells were initially believed to be mainly quiescent, rapidly proliferating tumorigenic cells were found in breast cancer. In colon cancer, the proliferative activity of the tumorigenic population has not been defined, although it represents an essential parameter for the development of more effective therapeutic strategies. Here, we show that tumorigenic colon cancer cells can be found in a rapidly proliferating state in vitro and in vivo, both in human tumors and mouse xenografts. Inhibitors of polo-like kinase1 (Plk1), a mitotic kinase essential fo…
Ikaros-1 couples cell cycle arrest of late striatal precursors with neurogenesis of enkephalinergic neurons
2010
et al.
A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma.
1995
A mutated cyclin-dependent kinase 4 (CDK4) was identified as a tumor-specific antigen recognized by HLA-A2. 1-restricted autologous cytolytic T lymphocytes (CTLs) in a human melanoma. The mutated CDK4 allele was present in autologous cultured melanoma cells and metastasis tissue, but not in the patient's lymphocytes. The mutation, an arginine-to-cysteine exchange at residue 24, was part of the CDK4 peptide recognized by CTLs and prevented binding of the CDK4 inhibitor p16INK4a, but not of p21 or of p27KIP1. The same mutation was found in one additional melanoma among 28 melanomas analyzed. These results suggest that mutation of CDK4 can create a tumor-specific antigen and can disrupt the ce…
Regulation of ribonucleotide reductase in response to iron deficiency
2011
Ribonucleotide reductase (RNR) is an essential enzyme required for DNA synthesis and repair. Although iron is necessary for class Ia RNR activity, little is known about the mechanisms that control RNR in response to iron deficiency. In this work, we demonstrate that yeast cells control RNR function during iron deficiency by redistributing the Rnr2–Rnr4 small subunit from the nucleus to the cytoplasm. Our data support a Mec1/Rad53-independent mechanism in which the iron-regulated Cth1/Cth2 mRNA-binding proteins specifically interact with the WTM1 mRNA in response to iron scarcity, and promote its degradation. The resulting decrease in the nuclear-anchoring Wtm1 protein levels leads to the re…
The DNA-binding subunit p140 of replication factor C is upregulated in cycling cells and associates with G 1 phase cell cycle regulatory proteins
1999
The DNA-binding subunit of replication factor C (RFCp140) plays an important role in both DNA replication and DNA repair. The mechanisms regulating activation of RFCp140 thereby controlling replication and cellular proliferation are largely unknown. We analyzed protein expression of RFCp140 during cell cycle progression and investigated the association of RFCp140 with cell cycle regulatory proteins in cell lines of various tissue origin and in primary hematopoietic cells. Western and Northern blot analyses of RFCp140 from synchronized cells showed downregulation of RFCp140 when cells enter a G0-like quiescent state and upregulation of RFCp140 in cycling cells. Translocation from the cytopla…
Circadian rhythms and chemical carcinogenesis: Potential link. An overview.
2009
Circadian rhythm is an integral and not replaceable part of the organism's homeostasis. Its signalling is multidimensional, overlooking global networks such as chromatin remodelling, cell cycle, DNA damage and repair as well as nuclear receptors function. Understanding its global networking will allow us to follow up not only organism dysfunction and pathology (including chemical carcinogenesis) but well-being in general having in mind that time is not always on our side. The authors thank ECNIS (Environmental Cancer, Nutrition and Individual Susceptibility), a network of excellence operating within the European Union 6th Framework Program, Priority 5: Food Quality and Safety (Contract no. …
The APC/C cofactor Cdh1 prevents replicative stress and p53-dependent cell death in neural progenitors
2013
The E3-ubiquitin ligase APC/C-Cdh1 is essential for endoreduplication but its relevance in the mammalian mitotic cell cycle is still unclear. Here we show that genetic ablation of Cdh1 in the developing nervous system results in hypoplastic brain and hydrocephalus. These defects correlate with enhanced levels of Cdh1 substrates and increased entry into the S phase in neural progenitors. However, cell division is prevented in the absence of Cdh1 due to hyperactivation of cyclin-dependent kinases, replicative stress, induction of p53, G2 arrest and apoptotic death of these progenitor cells. Concomitant ablation of p53 rescues apoptosis but not replicative stress, resulting in the presence of …