Search results for "Cell Line"

showing 10 items of 2924 documents

Ticket to Ride: Targeting Proteins to Exosomes for Brain Delivery.

2017

Exosomes represent an attractive vehicle for the delivery of biomolecules. However, mechanisms for loading functional molecules into exosomes are relatively unexplored. Here we report the use of the evolutionarily conserved late-domain (L-domain) pathway as a mechanism for loading exogenous proteins into exosomes. We demonstrate that labeling of a target protein, Cre recombinase, with a WW tag leads to recognition by the L-domain-containing protein Ndfip1, resulting in ubiquitination and loading into exosomes. Our results show that Ndfip1 expression acts as a molecular switch for exosomal packaging of WW-Cre that can be suppressed using the exosome inhibitor GW4869. When taken up by floxed …

0301 basic medicineBiocompatibilityRecombinant Fusion ProteinsGene ExpressionComputational biologyBiologyExosomesPermeabilityCell LineExtracellular VesiclesMice03 medical and health sciencesDrug Delivery SystemsDrug DiscoveryGeneticsAnimalsMolecular BiologyPharmacologyIntegrasesbusiness.industryImmunogenicityMembrane ProteinsRNABrainProteinsMicrovesiclesBiotechnologyProtein Transport030104 developmental biologyTargeted drug deliveryBlood-Brain BarrierCommentaryMolecular MedicineOriginal ArticleNasal AbsorptionCarrier ProteinsGenetic EngineeringbusinessMolecular therapy : the journal of the American Society of Gene Therapy
researchProduct

Characterization of a Fetal Liver Cell Population Endowed with Long-Term Multiorgan Endothelial Reconstitution Potential.

2016

et al.

0301 basic medicineBiologyEndothelial progenitor cellProgenitor cellsTissue‐Specific Stem CellsCell Line03 medical and health sciencesMiceFetusAntigens CDmedicineAnimalsNewborn transplantationProgenitor cellT-Cell Acute Lymphocytic Leukemia Protein 1Cell AggregationExtracellular Matrix ProteinsLiver cellEndothelial CellsCell BiologyCadherinsCell aggregation3. Good healthHematopoiesisEndothelial stem cellHaematopoiesisEndothelial reconstitutionFetal liver030104 developmental biologymedicine.anatomical_structureHematopoietic progenitorsLiverFetal liver ; Endothelial reconstitution ; Hematopoietic progenitors ; Progenitor cellsOrgan SpecificityImmunologyCancer researchMolecular MedicineBlood VesselsLeukocyte Common AntigensBone marrowStem cellDevelopmental Biology
researchProduct

Role of pulmonary surfactant protein Sp-C dimerization on membrane fragmentation: An emergent mechanism involved in lung defense and homeostasis.

2020

Surfactant protein C (SP-C) is a protein present in the pulmonary surfactant system that is involved in the biophysical properties of this lipoprotein complex, but it also has a role in lung defense and homeostasis. In this article, we propose that the link between both functions could rely on the ability of SP-C to induce fragmentation of phospholipid membranes and generate small vesicles that serve as support to present different ligands to cells in the lungs. Our results using bimolecular fluorescence complementation and tunable resistive pulse sensing setups suggest that SP-C oligomerization could be the triggering event that causes membrane budding and nanovesiculation. As shown by flu…

0301 basic medicineBiophysicsBiochemistryCell Line03 medical and health sciencesBimolecular fluorescence complementation0302 clinical medicinePulmonary surfactantProtein DomainsHumansAmino Acid SequenceFragmentation (cell biology)Unilamellar LiposomesChemistryVesicleSurfactant protein CCell BiologyMembrane buddingFlow CytometryPulmonary Surfactant-Associated Protein CEndocytosisRecombinant ProteinsCell biology030104 developmental biology030228 respiratory systemMembrane proteinStructural biologyMicroscopy FluorescencePeptidomimeticsProtein MultimerizationDimerizationBiochimica et biophysica acta. Biomembranes
researchProduct

Skin-derived mesenchymal stem cells as quantum dot vehicles to tumors

2017

Dominyka Dapkute,1,2 Simona Steponkiene,1 Danute Bulotiene,1 Liga Saulite,3 Una Riekstina,3 Ricardas Rotomskis1,4 1Biomedical Physics Laboratory, National Cancer Institute, Vilnius, Lithuania; 2Institute of Biosciences, Vilnius University, Vilnius, Lithuania; 3Faculty of Medicine, University of Latvia, Riga, Latvia; 4Biophotonics Group of Laser Research Center, Faculty of Physics, Vilnius University, Vilnius, Lithuania Purpose: Cell-mediated delivery of nanoparticles is emerging as a new method of cancer diagnostics and treatment. Due to their inherent regenerative properties, adult mesenchymal stem cells (MSCs) are naturally attracted to wounds and sites of inflammation, as well as tumors.…

0301 basic medicineBiophysicsPharmaceutical ScienceConnective tissueBioengineeringBreast Neoplasmsquantum dotsMice SCIDFlow cytometryBiomaterialsCell therapy03 medical and health sciencesIn vivoCell MovementInternational Journal of NanomedicineCell Line TumorDrug DiscoverymedicineAnimalsHumansViability assayParticle SizeCytotoxicityCell ShapeSkinOriginal Researchmesenchymal stem cellsMigration Assaymedicine.diagnostic_testCell DeathChemistryOrganic ChemistryMesenchymal stem cellGeneral MedicineDynamic Light ScatteringEndocytosis030104 developmental biologymedicine.anatomical_structureimmunodeficient miceCancer researchNanoparticlesFemaletumor tropismtumor-specific deliveryInternational Journal of Nanomedicine
researchProduct

Molecular analysis of differential antiproliferative activity of resveratrol, epsilon viniferin and labruscol on melanoma cells and normal dermal cel…

2018

IF 3.778 (2016); International audience; Very recently, we have produced new resveratrol derived compounds, especially labruscol by culture of elicited grapevine cell suspensions (Vitis labrusca L.). This new polyphenolic oligomer could function as cancer chemopreventive agent in similar manner of resveratrol. In this study, we have determined the efficiency of resveratrol, ε-viniferin and the labruscol on human melanoma cell with or without metastatic phenotype. Our results show a differential activity of the three compounds where the resveratrol remains the polyphenolic compound with the most effective action compared to other oligomers. These three compounds block cell cycle of melanoma …

0301 basic medicineBioproductsProgrammed cell deathCellCyclin AResveratrolepsilon-ViniferinCell cycleToxicologyS Phase03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCell Line Tumor[SDV.IDA]Life Sciences [q-bio]/Food engineeringCDC2 Protein KinaseCyclin EStilbenesmedicineCytotoxic T cellAnticarcinogenic AgentsHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyCyclin D1VitisMelanoma cellsMelanomaCyclinBenzofuransCell ProliferationSkinKinaseCyclin-Dependent Kinase 2food and beveragesPolyphenolsGeneral MedicineCell cycleFibroblasts3. Good health030104 developmental biologymedicine.anatomical_structurechemistryResveratrol030220 oncology & carcinogenesis[SDV.TOX]Life Sciences [q-bio]/ToxicologyCancer researchFood ScienceFood and chemical toxicology : an international journal published for the British Industrial Biological Research Association
researchProduct

Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome

2020

TP53 missense mutations leading to the expression of mutant p53 oncoproteins are frequent driver events during tumorigenesis. p53 mutants promote tumor growth, metastasis and chemoresistance by affecting fundamental cellular pathways and functions. Here, we demonstrate that p53 mutants modify structure and function of the Golgi apparatus, culminating in the increased release of a pro-malignant secretome by tumor cells and primary fibroblasts from patients with Li-Fraumeni cancer predisposition syndrome. Mechanistically, interacting with the hypoxia responsive factor HIF1α, mutant p53 induces the expression of miR-30d, which in turn causes tubulo-vesiculation of the Golgi apparatus, leading …

0301 basic medicineBiopsyGeneral Physics and AstronomyGolgi ApparatusAnimals Biopsy Breast Neoplasms Cell Line Tumor Cell Transformation Neoplastic Female Fibroblasts Gene Expression Regulation Neoplastic Golgi Apparatus Humans Hypoxia-Inducible Factor 1 alpha Subunit Li-Fraumeni Syndrome Mice MicroRNAs Microtubules Mutation Primary Cell Culture Secretory Vesicles Signal TransductionSkin Tumor Microenvironment Tumor Suppressor Protein p53 Xenograft Model Antitumor Assays02 engineering and technologymedicine.disease_causeCell TransformationMicrotubulesSettore BIO/09 - FisiologiaMetastasisLi-Fraumeni SyndromeMiceTumor MicroenvironmentGolgisecretory machinerySuper-resolution microscopyAnimals; Biopsy; Breast Neoplasms; Cell Line Tumor; Cell Transformation Neoplastic; Female; Fibroblasts; Gene Expression Regulation Neoplastic; Golgi Apparatus; Humans; Hypoxia-Inducible Factor 1 alpha Subunit; Li-Fraumeni Syndrome; Mice; MicroRNAs; Microtubules; Mutation; Primary Cell Culture; Secretory Vesicles; Signal Transduction; Skin; Tumor Microenvironment; Tumor Suppressor Protein p53; Xenograft Model Antitumor Assayslcsh:ScienceSkinMultidisciplinaryTumorChemistrymutant p53QCell migrationMicroRNASecretomics021001 nanoscience & nanotechnologyCell biologyGene Expression Regulation NeoplasticCell Transformation NeoplasticsymbolsFibroblastmiR-30dFemaleHypoxia-Inducible Factor 10210 nano-technologyBreast NeoplasmHumanSignal TransductionCancer microenvironmentStromal cellSecretory VesicleSciencePrimary Cell CultureBreast NeoplasmsMicrotubuleGolgi ApparatuSettore MED/08 - Anatomia Patologicaalpha SubunitGeneral Biochemistry Genetics and Molecular BiologyArticleCell Line03 medical and health sciencessymbols.namesakeCell Line TumormedicineAnimalsHumansSettore MED/05 - Patologia ClinicaSecretionTumor microenvironmentNeoplasticAnimalSecretory VesiclesGeneral ChemistryOncogenesGolgi apparatusHDAC6FibroblastsMicroreviewHypoxia-Inducible Factor 1 alpha SubunitmicroenvironmentXenograft Model Antitumor AssaysMicroRNAs030104 developmental biologyGene Expression RegulationMutationlcsh:QTumor Suppressor Protein p53Carcinogenesis
researchProduct

Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology.

2018

Abstract Introduction Adaptogens are natural compounds or plant extracts that increase adaptability and survival of organisms under stress. Adaptogens stimulate cellular and organismal defense systems by activating intracellular and extracellular signaling pathways and expression of stress-activated proteins and neuropeptides. The effects adaptogens on mediators of adaptive stress response and longevity signaling pathways have been reported, but their stress-protective mechanisms are still not fully understood. Aim of the study The aim of this study was to identify key molecular mechanisms of adaptogenic plants traditionally used to treat stress and aging-related disorders, i.e., Rhodiola r…

0301 basic medicineBryoniamedicine.medical_treatmentLongevityPharmaceutical ScienceEleutherococcusNutrient sensingWithaniaCREB03 medical and health sciencesDownregulation and upregulationCell Line TumorDrug DiscoveryAdaptogenmedicineHumansNeuroinflammationPharmacologybiologyPlant ExtractsSystems BiologyBrainMERTKAdaptation PhysiologicalLeuzeaCell biology030104 developmental biologyComplementary and alternative medicineNuclear receptorbiology.proteinMolecular MedicineRhodiolaSignal transductionGlioblastomaNeurogliaSignal TransductionPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

The embryo-placental CD15-positive "vasculogenic zones" as a source of propranolol-sensitive pediatric vascular tumors.

2015

Abstract Objective Propranolol-induced involution is a unique biological feature of some pediatric vascular tumors, for instance infantile hemangioma (IH), cerebral cavernoma or chorioangioma. Currently, the cellular origin of these distinct tumors is unclear. In this study, we tested the hypothesis that propranolol-responsive vascular tumors are derived from common vessel-forming CD15 + progenitor cells which occur in early gestation. The aim of this study was to identify the tumor-relevant CD15 + progenitors at the early stages of embryo-placental development. Materials and methods Human embryo-placental units of 4–8 weeks gestation and pediatric vascular tumors were tested for expression…

0301 basic medicineCD31Pathologymedicine.medical_specialtyPlacentaCD34Lewis X AntigenCD15BiologyHemangioma03 medical and health sciences0302 clinical medicineNeoplastic Syndromes HereditaryPregnancyPlacentamedicineHumansCell LineageHemangioma CapillaryAge of OnsetStem Cell NicheChildNeural tubeInfant NewbornObstetrics and GynecologyPlacentationEndothelial Cellsmedicine.diseaseEmbryo MammalianPropranololPlacentationPregnancy Trimester First030104 developmental biologymedicine.anatomical_structureReproductive MedicineDrug Resistance Neoplasm030220 oncology & carcinogenesisNeoplasms Vascular TissueNeoplastic Stem CellsFemaleHemangiomaImmunostainingDevelopmental BiologyPlacenta
researchProduct

Circulating exosomes deliver free fatty acids from the bloodstream to cardiac cells: Possible role of CD36

2019

Regulation of circulating free fatty acid (FFA) levels and delivery is crucial to maintain tissue homeostasis. Exosomes are nanomembranous vesicles that are released from diverse cell types and mediate intercellular communication by delivering bioactive molecules. Here, we sought to investigate the uptake of FFAs by circulating exosomes, the delivery of FFA-loaded exosomes to cardiac cells and the possible role of the FFA transporter CD36 in these processes. Circulating exosomes were purified from the serum of healthy donors after an overnight fast (F) or 20 minutes after a high caloric breakfast (postprandial, PP). Western blotting, Immunogold Electron Microscopy and FACS analysis of circu…

0301 basic medicineCD36 AntigensMaleLuminescenceCD36Mice SCIDFatty Acids NonesterifiedExosomesBiochemistryFatsMiceSpectrum Analysis TechniquesAnimal CellsMice Inbred NODMedicine and Health SciencesMyocytes CardiacTissue homeostasischemistry.chemical_classificationCardiomyocytesMultidisciplinarybiologymedicine.diagnostic_testPhysicsElectromagnetic RadiationQFatty AcidsRHeartFlow CytometryLipidsCell biologyBlotSpectrophotometryPhysical SciencesMedicinelipids (amino acids peptides and proteins)FemaleCytophotometryCellular Structures and OrganellesAnatomyCellular TypesResearch ArticleAdultScienceMuscle TissueResearch and Analysis MethodsFluorescenceFlow cytometryCell Line03 medical and health sciencesIn vivomedicineDiabetes MellitusAnimalsHumansVesiclesObesityRats WistarMuscle Cells030102 biochemistry & molecular biologyFatty acidBiology and Life SciencesCell BiologyAtherosclerosisMicrovesiclesDisease Models Animal030104 developmental biologyBiological Tissuechemistrybiology.proteinCardiovascular AnatomyEx vivoPLoS ONE
researchProduct

Short Peptide Vaccine Induces CD4+ T Helper Cells in Patients with Different Solid Cancers.

2015

Abstract Previous cancer vaccination trials often aimed to activate CD8+ cytotoxic T-cell (CTL) responses with short (8–10mer) peptides and targeted CD4+ helper T cells (TH) with HLA class II–binding longer peptides (12–16 mer) that were derived from tumor antigens. Accordingly, a study of immunomonitoring focused on the detection of CTL responses to the short, and TH responses to the long, peptides. The possible induction of concurrent TH responses to short peptides was widely neglected. In a recent phase I vaccination trial, 53 patients with different solid cancers were vaccinated with EMD640744, a cocktail of five survivin-derived short (9- or 10-mer) peptides in Montanide ISA 51VG. We m…

0301 basic medicineCD4-Positive T-LymphocytesCancer ResearchImmunologyOleic AcidsHuman leukocyte antigenCD8-Positive T-LymphocytesCancer VaccinesCell Line03 medical and health sciences0302 clinical medicineAntigenAdjuvants ImmunologicNeoplasmsCytotoxic T cellMedicineHumansAvidityMannitolbusiness.industryVaccinationCTL*030104 developmental biologyTreatment OutcomeImmunologyVaccines SubunitPeptide vaccinebusinessCD8030215 immunologyCancer immunology research
researchProduct