Search results for "Cellular localization"

showing 10 items of 93 documents

Immunohistological and immunoelectron microscopic identification of TNF alpha in normal human and murine epidermis.

1992

The presence, distribution and cellular localization of tumour necrosis factor-alpha (TNF alpha) were investigated in normal human and murine epidermis using immunohistological and immunoelectron microscopic methods with monoclonal and polyclonal antibodies. The immunostaining revealed an intercellular plasma membrane and cytoplasmic labelling of the epidermal keratinocytes, but no labelling of Langerhans cells, melanocytes and Merkel cells. Large amounts of TNF alpha were regularly found in the sebaceous glands. These findings demonstrate that epidermal keratinocytes and especially sebocytes produce and release TNF alpha and that this keratinocyte-derived cytokine may be important for the …

AdultMalePathologymedicine.medical_specialtyImmunoelectron microscopymedicine.medical_treatmentDermatologyMicemedicineAnimalsHumansMicroscopy ImmunoelectronCellular localizationMice Inbred BALB Cintegumentary systemEpidermis (botany)biologyTumor Necrosis Factor-alphaGeneral MedicineMiddle AgedMolecular biologyImmunohistochemistryCytokinemedicine.anatomical_structurePolyclonal antibodiesbiology.proteinImmunohistochemistryFemaleEpidermisMerkel cellImmunostainingArchives of dermatological research
researchProduct

Cannabinoid control of brain bioenergetics: Exploring the subcellular localization of the CB1 receptor

2014

Brain mitochondrial activity is centrally involved in the central control of energy balance. When studying mitochondrial functions in the brain, however, discrepant results might be obtained, depending on the experimental approaches. For instance, immunostaining experiments and biochemical isolation of organelles expose investigators to risks of false positive and/or false negative results. As an example, the functional presence of cannabinoid type 1 (CB1) receptors on brain mitochondrial membranes (mtCB1) was recently reported and rapidly challenged, claiming that the original observation was likely due to artifact results. Here, we addressed this issue by directly comparing the procedures…

CB1 receptorWIN WIN55212-2Cannabinoid receptorBrain bioenergeticsLactate dehydrogenase Amedicine.medical_treatmentSDHADMSO dimethyl sulfoxideMitochondrionBiologySlp2 stomatin-like protein 2SDHA succinate dehydrogenase aTechnical ReportmedicineantibodieseducationReceptorKO knock-outMolecular Biologyeducation.field_of_studyelectron microscopyLDHa lactate dehydrogenase aDAB–Ni Ni-intensified 33ʹ-diaminobenzidine–4HClCell BiologySubcellular localizationWT wild-typemitochondriaBiochemistryCB1 cannabinoid type 1 receptorBSA bovine serum albuminCannabinoidorganelle purificationNeuroscienceImmunostainingMolecular Metabolism
researchProduct

Loss of tumor suppressor protein PTEN during renal carcinogenesis

2002

The tumor suppressor gene PTEN (phosphatase and tensin homologue deleted from chromosome 10) encodes a dual specific protein and phospholipid phosphatase that affects cell proliferation, apoptosis and migration. In our study, we examined protein expression of PTEN in renal carcinogenesis. PTEN protein levels were examined in 42 clear cell renal cell carcinomas (ccRCC) and oncocytomas as well as in the corresponding normal renal tissue of the same patients using Western blot analysis. Cellular localization was analyzed by immunohistochemistry. PTEN was highly expressed in all investigated normal renal tissue specimens. Immunohistochemical analysis showed an almost exclusive staining of proxi…

Cancer ResearchTumor suppressor genebiologyurologic and male genital diseasesmedicine.disease_causeBlotOncologymedicineCancer researchbiology.proteinTensinPTENCarcinogenesisImmunostainingClear cellCellular localizationInternational Journal of Cancer
researchProduct

aPKCζ cortical loading is associated with Lgl cytoplasmic release and tumor growth in Drosophila and human epithelia

2007

Atypical protein kinase C (aPKC) and Lethal giant larvae (Lgl) regulate apical-basal polarity in Drosophila and mammalian epithelia. At the apical domain, aPKC phosphorylates and displaces Lgl that, in turn, maintains aPKC inactive at the basolateral region. The mutual exclusion of these two proteins seems to be crucial for the correct epithelial structure and function. Here we show that a cortical aPKC loading induces Lgl cytoplasmic release and massive overgrowth in Drosophila imaginal epithelia, whereas a cytoplasmic expression does not alter proliferation and epithelial overall structure. As two aPKC isoforms (iota and zeta) exist in humans and we previously showed that Drosophila Lgl i…

Cancer Researchmedicine.medical_specialtyCytoplasmAPKCz; Cell polarity; Drosophila; Hugl-1; Lethal giant larvae; Ovarian epithelial cancersAPKCzEpitheliumInternal medicineDrosophilidaeCell polarityGeneticsmedicineAnimalsDrosophila ProteinsHumansWings AnimalMolecular BiologyProtein kinase CProtein Kinase CCell ProliferationRegulation of gene expressionOvarian NeoplasmsbiologyTumor Suppressor ProteinsGene Expression Regulation DevelopmentalHugl-1Lethal giant larvaebiology.organism_classificationProtein subcellular localization predictionEpitheliumOvarian epithelial cancersCell biologyEndocrinologymedicine.anatomical_structureDrosophila melanogasterPhenotypeGene Expression RegulationCell polarityFemaleDrosophilaDrosophila melanogasterDrosophila Protein
researchProduct

Lafora disease fibroblasts exemplify the molecular interdependence between thioredoxin 1 and the proteasome in mammalian cells

2013

13 páginas, 8 figuras (que no aparecen en este documento, se pueden consultar en: http://www.sciencedirect.com/science/article/pii/S0891584913003274#ec0005)

Cell signalingProteasome Endopeptidase ComplexBlotting WesternFree radicalsBiologyBiochemistryLafora diseaseThioredoxin 1MiceThioredoxinsPhysiology (medical)medicineAnimalsHumansImmunoprecipitationLafora diseaseEndoplasmic Reticulum Chaperone BiPCell proliferationMicroscopy ConfocalProteasomeReverse Transcriptase Polymerase Chain ReactionEndoplasmic reticulumCell cycleFibroblastsSubcellular localizationmedicine.diseaseFlow CytometryCell biologyRare diseasesCytosolOxidative StressBiochemistryProteasomeLafora DiseaseUnfolded protein responseNIH 3T3 CellsAntioxidant enzymesOxidation-Reduction
researchProduct

Expression of protein kinase C gene family members is temporally and spatially regulated during neural development in vitro.

1998

We used primary cultures of rat hippocampal neurons and PCC7-Mz1 cells to correlate the expression of the protein kinase C (PKC) gene family with specific events during neural differentiation. Multipotent PCC7-Mz1 embryonic carcinoma stem cells develop into a tissue-like pattern of neuronal, fibroblast-like and astroglial cells by all-trans retinoic acid (RA) treatment. Western blot analyses demonstrate that PKCalpha, betaI, gamma, theta, mu, lambda, and zeta were constitutively expressed but the expression of PKCbetaII, delta, epsilon, and eta was up-regulated three days after addition of RA when cells mature morphologically. While the protein levels of the PKC isoforms betaII, delta and e…

Cell typeHistologyCellular differentiationBlotting WesternTretinoinBiologyGene Expression Regulation EnzymologicPathology and Forensic MedicineMiceTumor Cells CulturedAnimalsMARCKSProtein kinase CCells CulturedProtein Kinase CNeuronsNeurogenesisAntibodies MonoclonalCell DifferentiationCell BiologyGeneral MedicineSubcellular localizationMolecular biologyCell biologyRatsUp-RegulationIsoenzymesProtein BiosynthesisStem cellNeural developmentSubcellular FractionsEuropean journal of cell biology
researchProduct

A single bout of endurance exercise induces αB-crystallin (CRYAB) modulation in cardiac muscle as it happens in oxidative skeletal muscle fibers

2018

CRYAB is a small Heat Shock Protein, expressed in various tissues such as skeletal and cardiac muscles, activated as phosphorylated CRYAB (pCRYAB) and involved in several pathophysiological processes. In mammals there are no reports to date on CRYAB activation following an acute endurance exercise, so the aim of my study was to explore in mouse cardiac tissue the pCRYAB levels as effect of this exercise at 0’, 15’ and 120’ of recovery. H2O2 - treated HL-1 cardiomyocytes have been utilized as in vitro model to identify the underlying molecular mechanism/s. Both in vivo and in vitro models showed no changes in CRYAB protein expression level but its phosphorylation state was significantly incr…

ChemistryCardiac muscleOxidative phosphorylationmedicine.disease_causeBiochemistryCell biologymedicine.anatomical_structureEndurance trainingIn vivoPhysiology (medical)Heat shock proteinmedicinePhosphorylationCellular localizationOxidative stressFree Radical Biology and Medicine
researchProduct

Mg2+-binding shifts the IM30 activity from membrane protection to membrane destabilization

2020

ABSTRACTThe inner membrane-associated protein of 30 kDa (IM30) is essential in chloroplasts and cyanobacteria. The spatio-temporal cellular localization of the protein appears to be highly dynamic and triggered by internal as well as external stimuli, mainly light intensity. A soluble fraction of the protein is localized in the cyanobacterial cytoplasm or the chloroplast stroma, respectively. Additionally, the protein attaches to the thylakoid membrane as well as to the chloroplast inner envelope or the cyanobacterial cytoplasmic membrane, respectively, especially under conditions of membrane stress. IM30 is involved in thylakoid membrane biogenesis and/or maintenance, where it either stabi…

ChloroplastLight intensityChloroplast stromaMembraneCytoplasmChemistryThylakoidBiophysicsLipid bilayer fusionCellular localization
researchProduct

Subcellular localization of pentachlorophenol 4-monooxygenase in Sphingobium chlorophenolicum ATCC 39723.

2002

Abstract We have studied the subcellular localization of pentachlorophenol 4-monooxygenase (PCP4MO) in Sphingobium chlorophenolicum ATCC 39723 during induction by pentachlorophenol (PCP). Using a monoclonal antibody CL6 specific to the native and recombinant PCP4MO, the enzyme was primarily found soluble as determined by immunoblot and ELISA analyses of cellular fractions. However, the enzyme was observed both in the soluble and membrane-bound forms during induction for 2–4 h, suggesting its translocation out from the cytoplasm. Electron microscopy confirmed that PCP4MO was predominantly present in the cytoplasm at 1 h, whereas at 4 h significant amount was detected also in the membrane and…

CytoplasmBiophysicsBiologyProtein Sorting SignalsBiochemistryMixed Function Oxygenaseschemistry.chemical_compoundBiosynthesisAntibody SpecificityInner membraneMolecular BiologySphingobium chlorophenolicumAlphaproteobacteriachemistry.chemical_classificationAntibodies MonoclonalCell BiologyPeriplasmic spacebiology.organism_classificationSubcellular localizationMolecular biologyImmunohistochemistryPentachlorophenolKineticsEnzymechemistryBiochemistryCytoplasmPeriplasmBiochemical and biophysical research communications
researchProduct

Molecular basis of the functional distinction between Cln1 and Cln2 cyclins

2012

Cln1 and Cln2 are very similar but not identical cyclins. In this work, we tried to describe the molecular basis of the functional distinction between Cln1 and Cln2. We constructed chimeric cyclins containing different fragments of Cln1 and Cln2 and performed several functional analysis that make it possible to distinguish between Cln1 or Cln2. We identified that region between amino acids 225 and 299 of Cln2 is not only necessary but also sufficient to confer Cln2 specific functionality compared with Cln1. We also studied Cln1 and Cln2 subcellular localization identifying additional differences between them. Both cyclins are distributed between the nucleus and the cytoplasm, but Cln1 shows…

CytoplasmSaccharomyces cerevisiae ProteinsTranscription GeneticBlotting WesternGenes FungalGenetic VectorsGreen Fluorescent ProteinsActive Transport Cell NucleusSaccharomyces cerevisiaeKaryopherinsBiologyReportCyclinsGene Expression Regulation FungalmedicineAmino Acid SequenceNuclear export signalMolecular BiologyPeptide sequenceCyclinKaryopherinCell Nucleuschemistry.chemical_classificationCell Cycle CheckpointsCell BiologySubcellular localizationCell nucleusmedicine.anatomical_structureBiochemistrychemistryCytoplasmNuclear transportCDC28 Protein Kinase S cerevisiaePlasmidsDevelopmental BiologyCell Cycle
researchProduct