Search results for "Chondrocytes"

showing 10 items of 54 documents

Going beyond histology. Synchrotron micro-computed tomography as a methodology for biological tissue characterization: from tissue morphology to indi…

2009

Current light microscopic methods such as serial sectioning, confocal microscopy or multiphoton microscopy are severely limited in their ability to analyse rather opaque biological structures in three dimensions, while electron optical methods offer either a good three-dimensional topographic visualization (scanning electron microscopy) or high-resolution imaging of very thin samples (transmission electron microscopy). However, sample preparation commonly results in a significant alteration and the destruction of the three-dimensional integrity of the specimen. Depending on the selected photon energy, the interaction between X-rays and biological matter provides semi-transparency of the spe…

Cartilage Articularthree-dimensional imagingMaterials scienceOpacityScanning electron microscope1004Biomedical EngineeringBiophysicsAnalytical chemistryBioengineeringPhoton energyIn Vitro TechniquesBiochemistrysynchrotron micro-computed tomographylaw.inventionBiomaterialshistologyChondrocyteslawConfocal microscopyResearch articlesAnimalscartilageCells CulturedTomographic reconstruction30HistologySynchrotron124Radiographic Image EnhancementTransmission electron microscopychondrocyteCattleTomography X-Ray ComputedSynchrotronsscanning electron microscopyBiotechnologyBiomedical engineeringJournal of the Royal Society, Interface
researchProduct

How miR-31-5p and miR-33a-5p Regulates SP1/CX43 Expression in Osteoarthritis Disease: Preliminary Insights

2021

Osteoarthritis (OA) is a degenerative bone disease that involved micro and macro-environment of joints. To date, there are no radical curative treatments for OA and novel therapies are mandatory. Recent evidence suggests the role of miRNAs in OA progression. In our previous studies, we demonstrated the role of miR-31-5p and miR-33a families in different bone regeneration signaling. Here, we investigated the role of miR-31-5p and miR-33a-5p in OA progression. A different expression of miR-31-5p and miR-33a-5p into osteoblasts and chondrocytes isolated from joint tissues of OA patients classified in based on different Kellgren and Lawrence (KL) grading was highlighted

Male0301 basic medicineBone diseasechondrocytesOsteoarthritisCX43lcsh:Chemistry0302 clinical medicinelcsh:QH301-705.5Cells CulturedSpectroscopymicroRNAosteoblastsGeneral MedicineMiddle AgedPrognosisComputer Science ApplicationsmicroRNAsmir-31030220 oncology & carcinogenesischondrocyteosteoblastFemalemedicine.symptomSignal TransductionAdultSp1 Transcription FactorInflammationBiologyArticleCatalysisInorganic Chemistry03 medical and health sciencesmicroRNAmedicineHumansPhysical and Theoretical ChemistryBone regenerationMolecular BiologyGeneLoss functionAgedOrganic Chemistrymedicine.diseaseSP1osteoarthritis030104 developmental biologyGene Expression Regulationlcsh:Biology (General)lcsh:QD1-999Connexin 43Cancer researchFollow-Up StudiesInternational Journal of Molecular Sciences
researchProduct

Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis

2015

Aging is a natural process characterized by the declining ability of the different organs and tissues to respond to stress, increasing homeostatic imbalance and risk of disease. Osteoarthritis (OA) is a multifactorial disease in which cartilage degradation is a central feature. Aging is the main risk factor for OA. In OA cartilage, a decrease in the number of chondrocytes and in their ability to regenerate the extracellular matrix and adequately respond to stress has been described. OA chondrocytes show a senescence secretory phenotype (SSP) consisting on the overproduction of cytokines (interleukins 1 and 6), growth factors (e.g., epidermal growth factor) and matrix metalloproteinases (MMP…

0301 basic medicineSenescenceMAPK/ERK pathwayAgingProgrammed cell deathDNA damageBiologymedicine.disease_causeBiochemistryChondrocyteEpigenesis Genetic03 medical and health sciencesChondrocytesOsteoarthritisAutophagymedicineAnimalsHumansMolecular Targeted TherapyEpigeneticsCellular SenescencePharmacologyAutophagyDNA MethylationCell biologyMicroRNAsOxidative Stress030104 developmental biologymedicine.anatomical_structureImmunologyReactive Oxygen SpeciesOxidative stressDNA DamageBiochemical Pharmacology
researchProduct

The CO-releasing molecule CORM-2 is a novel regulator of the inflammatory process in osteoarthritic chondrocytes

2008

Previous work has shown that the CO-releasing molecule CORM-2 protects against cartilage degradation. The aim of this study was to examine whether CORM-2 can control the production of inflammatory mediators in osteoarthritic chondrocytes and determine the mechanisms involved.Primary cultures of chondrocytes from OA patients were stimulated with IL-1beta. The production of reactive oxygen species, nitrite, PGE(2), TNF-alpha and IL-1 receptor antagonist (IL-1Ra) were measured in the presence or absence of CORM-2. The expression of nitric oxide synthase-2 (NOS-2), cyclo-oxygenase-2 (COX-2) and microsomal PG E synthase-1 (mPGES-1) was followed by western blot and real-time PCR. Activation of nu…

Malemedicine.medical_specialtymedicine.drug_classmedicine.medical_treatmentInterleukin-1betaNitric Oxide Synthase Type IINitric Oxidemedicine.disease_causeDinoprostoneChondrocyteNitric oxidechemistry.chemical_compoundChondrocytesRheumatologyWestern blotInternal medicineOsteoarthritisOrganometallic CompoundsmedicineHumansPharmacology (medical)Cells CulturedAgedProstaglandin-E SynthasesAged 80 and overchemistry.chemical_classificationReactive oxygen speciesDose-Response Relationship Drugmedicine.diagnostic_testTumor Necrosis Factor-alphabusiness.industryNF-kappa BHypoxia-Inducible Factor 1 alpha SubunitReceptor antagonistMolecular biologyIntramolecular OxidoreductasesInterleukin 1 Receptor Antagonist ProteinEndocrinologymedicine.anatomical_structureCytokinechemistryCyclooxygenase 2PhosphorylationFemaleReactive Oxygen SpeciesbusinessOxidative stressRheumatology
researchProduct

Agkistrodon ameliorates pain response and prevents cartilage degradation in monosodium iodoacetate-induced osteoarthritic rats by inhibiting chondroc…

2019

Abstract Ethnopharmacological relevance Osteoarthritis (OA), characterized by joint pain and cartilage degradation, is the most common form of joint disease worldwide but with no satisfactory therapy available. The ethanol extract of Agkistrodon acutus (EAA) has been widely used as a traditional Chinese medicine (TCM) for the treatment of arthralgia and inflammatory diseases, but there is no report regarding its efficacy on OA to date. Here, we determined the effects of EAA on the pain behavior and cartilage degradation in vivo and clarified its target genes and proteins associated with chondrocyte hypertrophy and apoptosis in vitro. Materials and methods In vivo OA model was established by…

Cartilage ArticularMalePainChondrocyte hypertrophyApoptosisOsteoarthritisPharmacologyComplex MixturesChondrocyteRats Sprague-Dawley03 medical and health sciencesAnimal data0302 clinical medicineChondrocytesIn vivoDrug DiscoveryOsteoarthritismedicineAnimalsViability assay030304 developmental biologyPharmacology0303 health sciencesAnalgesicsChemistryCartilageHypertrophymedicine.diseaseIodoacetic Acidmedicine.anatomical_structureApoptosis030220 oncology & carcinogenesisAgkistrodonJournal of ethnopharmacology
researchProduct

Morphogenetically active scaffold for osteochondral repair (Polyphosphate/alginate/N,O-carboxymethyl chitosan)

2016

Here we describe a novel bioinspired hydrogel material that can be hardened with calcium ions to yield a scaffold material with viscoelastic properties matching those of cartilage. This material consists of a negatively charged biopolymer triplet, composed of morphogenetically active natural inorganic polyphosphate (polyP), along with the likewise biocompatible natural polymers N,O-carboxymethyl chitosan (N,O-CMC) and alginate. The porosity of the hardened scaffold material obtained after calcium exposure can be adjusted by varying the pre-processing conditions. Various compression tests were applied to determine the local (nanoindentation) and bulk mechanical properties (tensile/compressio…

Cartilage ArticularScaffoldlcsh:Diseases of the musculoskeletal systemO-Carboxymethyl chitosanBiocompatible Materials02 engineering and technology01 natural sciencesHydrogel Polyethylene Glycol DimethacrylateChitosanchemistry.chemical_compoundGlucuronic AcidTissue engineeringPolyphosphatesAggrecansTissue ScaffoldsHexuronic AcidsN021001 nanoscience & nanotechnologymedicine.anatomical_structuretissue engineering0210 nano-technologyPorosityAlginatesEpiphyseal platelcsh:Surgeryregenerative medicineengineering.material010402 general chemistryOsteocytesChondrocytesUltimate tensile strengthmedicineHumansRegenerationCollagen Type IIAggrecanCell ProliferationChitosanWound HealingCartilagepolyphosphatelcsh:RD1-811Alkaline Phosphatase0104 chemical sciencesCartilagechemistryengineeringCalciumBiopolymerlcsh:RC925-935Biomedical engineering
researchProduct

Physico-chemical and mechanical characterization of in-situ forming xyloglucan gels incorporating a growth factor to promote cartilage reconstruction

2016

Abstract The development of growth factors is very promising in the field of tissue regeneration but specifically designed formulations have to be developed in order to enable such new biological entities (NBEs). In particular, the range of therapeutic concentrations is usually very low compared to other active proteins and the confinement in the target site can be of crucial importance. In-situ forming scaffolds are very promising solutions for minimally invasive intervention in cartilage reconstruction and targeting of NBEs. In this work injectable, in-situ forming gels of a temperature responsive partially degalactosylated xyloglucan (Deg-XG) incorporating the growth factor FGF-18 are fo…

In situInjectionFibroblast Growth FactorChemical Phenomenamedicine.medical_treatment02 engineering and technologyFibroblast growth factor01 natural sciencesViscositychemistry.chemical_compoundTissue ScaffoldSettore BIO/10 - BiochimicaComposite materialGlucansGelTissue ScaffoldsIn-situ forming gelsViscosityGrowth factor021001 nanoscience & nanotechnologyGlucanXyloglucanmedicine.anatomical_structureSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiMechanics of MaterialsXylansMaterials Science (all)0210 nano-technologyMaterials scienceMechanical PhenomenaInjectable scaffoldsBioengineeringCondensed Matter Physic010402 general chemistryInjectable scaffoldInjectionsBiomaterialsShear modulusXylanChondrocytesmedicineAnimalsMechanics of MaterialXyloglucanCartilage reconstructionCell ProliferationMechanical PhenomenaAnimalCartilageGrowth factorMechanical EngineeringIn-situ forming gelChondrocyte0104 chemical sciencesFibroblast Growth FactorsMolecular WeightCartilagechemistryBiophysicsCattleSettore CHIM/07 - Fondamenti Chimici Delle TecnologieTemperature-responsiveGels
researchProduct

Alternative and complementary therapies in osteoarthritis and cartilage repair

2020

Osteoarthritis (OA) is the most common joint condition and, with a burgeoning ageing population, is due to increase in prevalence. Beyond conventional medical and surgical interventions, there are an increasing number of ‘alternative’ therapies. These alternative therapies may have a limited evidence base and, for this reason, are often only afforded brief reference (or completely excluded) from current OA guidelines. Thus, the aim of this review was to synthesize the current evidence regarding autologous chondrocyte implantation (ACI), mesenchymal stem cell (MSC) therapy, platelet-rich plasma (PRP), vitamin D and other alternative therapies. The majority of studies were in knee OA or chond…

Complementary TherapiesMaleAgingmedicine.medical_specialtyAlternativeMEDLINEPsychological interventionOsteoarthritisReviewPlaceboMesenchymal Stem Cell TransplantationTransplantation Autologous03 medical and health sciences0302 clinical medicineChondrocytesOsteoarthritismedicineVitamin D and neurologyHumansVitamin DIntensive care medicineAutologous chondrocyte implantationddc:616030203 arthritis & rheumatology030222 orthopedicsbusiness.industryCartilageAge FactorsOsteoarthritis Cartilage Alternative Therapy Treatment HerbalVitaminsOsteoarthritis Kneemedicine.diseaseClinical trialTreatmentmedicine.anatomical_structureCartilageTreatment OutcomeHerbalFemaleTherapyGeriatrics and GerontologybusinessAging Clinical and Experimental Research
researchProduct

Genetic abrogation of the fibronectin-α5β1 integrin interaction in articular cartilage aggravates osteoarthritis in mice.

2018

The balance between synthesis and degradation of the cartilage extracellular matrix is severely altered in osteoarthritis, where degradation predominates. One reason for this imbalance is believed to be due to the ligation of the α5β1 integrin, the classic fibronectin (FN) receptor, with soluble FN fragments instead of insoluble FN fibrils, which induces matrix metalloproteinase (MMP) expression. Our objective was to determine whether the lack of α5β1-FN binding influences cartilage morphogenesis in vivo and whether non-ligated α5β1 protects or aggravates the course of osteoarthritis in mice. We engineered mice (Col2a-Cre;Fn1RGE/fl), whose chondrocytes express an α5β1 binding-deficient FN, …

Cartilage ArticularMale0301 basic medicineIntegrinsKnee JointGlycobiologylcsh:MedicineCartilage morphogenesisOsteoarthritisMatrix metalloproteinaseBiochemistryExtracellular matrixMice0302 clinical medicineAnimal CellsMedicine and Health Scienceslcsh:ScienceConnective Tissue CellsStainingMultidisciplinarybiologyChemistryExtracellular MatrixCell biologymedicine.anatomical_structureConnective TissueProteoglycansMatrix Metalloproteinase 3AnatomyCellular Structures and OrganellesCellular TypesResearch ArticleIntegrin alpha5beta1Signal TransductionIntegrinMice TransgenicResearch and Analysis Methods03 medical and health sciencesChondrocytesPhysical Conditioning AnimalMatrix Metalloproteinase 13OsteoarthritisCell AdhesionmedicineAnimalsHumansRegenerationCytoplasmic Staining030203 arthritis & rheumatologyCartilagelcsh:RBiology and Life SciencesProteinsCell Biologymedicine.diseaseFibronectinsFibronectinDisease Models AnimalBiological TissueCartilage030104 developmental biologyProteoglycanSpecimen Preparation and Treatmentbiology.proteinSafranin Staininglcsh:QCollagensArticular CartilagePLoS ONE
researchProduct

Isolation and characterization of a murine resident liver stem cell.

2008

Increasing evidence provides support that mammalian liver contains stem/progenitor cells, but their molecular phenotype, embryological derivation, biology and their role in liver cell turnover and regeneration remain to be further clarified. In this study, we report the isolation, characterization and reproducible establishment in line of a resident liver stem cell (RLSC) with immunophenotype and differentiative potentiality distinct from other previously described liver precursor/stem cells. RLSCs, derived from fetal and neonatal murine livers as well as from immortalized hepatocytic MMH lines and established in lines, are Sca+, CD34-, CD45-, alpha-fetoprotein+ and albumin-. This molecular…

Cellular differentiationLiver Stem CellCell SeparationBiologyImmunophenotypingLiver progenitor cellsMiceChondrocyteshepatocyteAnimalsCell LineageProgenitor cellLiver progenitor cells; hepatocyte; differentiationMolecular BiologyCells CulturedMultipotent Stem CellOligonucleotide Array Sequence AnalysisNeuronsOsteoblastsAnimalOligonucleotide Array Sequence AnalysiLiver cellOsteoblastGene Expression ProfilingMultipotent Stem CellsMesenchymal stem cellCell DifferentiationCell BiologydifferentiationNeuronChondrocyteMolecular biologyLiver regenerationCell biologyPhenotypeAnimals NewbornLiverMultipotent Stem CellHepatocytesStem cellAnimals; Animals Newborn; Cell Differentiation; Cell Lineage; Cell Separation; Cells Cultured; Chondrocytes; Gene Expression Profiling; Hepatocytes; Immunophenotyping; Liver; Mice; Multipotent Stem Cells; Neurons; Oligonucleotide Array Sequence Analysis; Osteoblasts; Phenotype; Molecular Biology; Cell BiologyCell death and differentiation
researchProduct