Search results for "Cod"
showing 10 items of 2985 documents
Simulation-based estimation of branching models for LTR retrotransposons
2017
Abstract Motivation LTR retrotransposons are mobile elements that are able, like retroviruses, to copy and move inside eukaryotic genomes. In the present work, we propose a branching model for studying the propagation of LTR retrotransposons in these genomes. This model allows us to take into account both the positions and the degradation level of LTR retrotransposons copies. In our model, the duplication rate is also allowed to vary with the degradation level. Results Various functions have been implemented in order to simulate their spread and visualization tools are proposed. Based on these simulation tools, we have developed a first method to evaluate the parameters of this propagation …
3-dimensional Analysis and Literature Review of the Root Canal Morphology and Physiological Foramen Geometry of 125 Mandibular Incisors by Means of M…
2019
Abstract Introduction The aim of this study was to examine the root canal system morphology of mandibular incisors by means of micro–computed tomographic imaging. Methods The root canal configuration, physiological foramina, frequency of accessory and connecting canals, and the size and shape of the physiological foramina of 125 mandibular incisors were investigated by means of micro-CT and 3-dimensional imaging software. Root canal configuration of the coronal, middle, and apical thirds and the physiological foramina number are described by a 4-digit system code. Results The most frequent root canal configurations were 1-1-1/1 (56%), 1-2-1/1 (17.6%), and 1-1-1/2 (10.4%); 9 additional diffe…
Parallel and Space-Efficient Construction of Burrows-Wheeler Transform and Suffix Array for Big Genome Data
2016
Next-generation sequencing technologies have led to the sequencing of more and more genomes, propelling related research into the era of big data. In this paper, we present ParaBWT, a parallelized Burrows-Wheeler transform (BWT) and suffix array construction algorithm for big genome data. In ParaBWT, we have investigated a progressive construction approach to constructing the BWT of single genome sequences in linear space complexity, but with a small constant factor. This approach has been further parallelized using multi-threading based on a master-slave coprocessing model. After gaining the BWT, the suffix array is constructed in a memory-efficient manner. The performance of ParaBWT has b…
Identification of control targets in Boolean molecular network models via computational algebra
2015
Motivation: Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The pot…
Fasting regulates EGR1 and protects from glucose- and dexamethasone-dependent sensitization to chemotherapy
2017
Fasting reduces glucose levels and protects mice against chemotoxicity, yet drugs that promote hyperglycemia are widely used in cancer treatment. Here, we show that dexamethasone (Dexa) and rapamycin (Rapa), commonly administered to cancer patients, elevate glucose and sensitize cardiomyocytes and mice to the cancer drug doxorubicin (DXR). Such toxicity can be reversed by reducing circulating glucose levels by fasting or insulin. Furthermore, glucose injections alone reversed the fasting-dependent protection against DXR in mice, indicating that elevated glucose mediates, at least in part, the sensitizing effects of rapamycin and dexamethasone. In yeast, glucose activates protein kinase A (P…
Hypoxia-Induced miR-675-5p Supports β-Catenin Nuclear Localization by Regulating GSK3-β Activity in Colorectal Cancer Cell Lines
2020
The reduction of oxygen partial pressure in growing tumors triggers numerous survival strategies driven by the transcription factor complex HIF1 (Hypoxia Inducible Factor-1). Recent evidence revealed that HIF1 promotes rapid and effective phenotypic changes through the induction of non-coding RNAs, whose contribution has not yet been fully described. Here we investigated the role of the hypoxia-induced, long non-coding RNA H19 (lncH19) and its intragenic miRNA (miR-675-5p) into HIF1-Wnt crosstalk. During hypoxic stimulation, colorectal cancer cell lines up-regulated the levels of both the lncH19 and its intragenic miR-675-5p. Loss of expression experiments revealed that miR-675-5p inhibitio…
Identification of transcribed protein coding sequence remnants within lincRNAs
2018
Abstract Long intergenic non-coding RNAs (lincRNAs) are non-coding transcripts >200 nucleotides long that do not overlap protein-coding sequences. Importantly, such elements are known to be tissue-specifically expressed and to play a widespread role in gene regulation across thousands of genomic loci. However, very little is known of the mechanisms for the evolutionary biogenesis of these RNA elements, especially given their poor conservation across species. It has been proposed that lincRNAs might arise from pseudogenes. To test this systematically, we developed a novel method that searches for remnants of protein-coding sequences within lincRNA transcripts; the hypothesis is that we can t…
Six Serum miRNAs Fail to Validate as Myotonic Dystrophy Type 1 Biomarkers.
2016
Myotonic dystrophy type 1 (DM1) is an autosomal dominant genetic disease caused by expansion of a CTG microsatellite in the 3' untranslated region of the DMPK gene. Despite characteristic muscular, cardiac, and neuropsychological symptoms, CTG trinucleotide repeats are unstable both in the somatic and germinal lines, making the age of onset, clinical presentation, and disease severity very variable. A molecular biomarker to stratify patients and to follow disease progression is, thus, an unmet medical need. Looking for a novel biomarker, and given that specific miRNAs have been found to be misregulated in DM1 heart and muscle tissues, we profiled the expression of 175 known serum miRNAs in …
MicroRNAs miR-19, miR-340, miR-374 and miR-542 regulate MID1 protein expression.
2018
The MID1 ubiquitin ligase activates mTOR signaling and regulates mRNA translation. Misregulation of MID1 expression is associated with various diseases including midline malformation syndromes, cancer and neurodegenerative diseases. While this indicates that MID1 expression must be tightly regulated to prevent disease states specific mechanisms involved have not been identified. We examined miRNAs to determine mechanisms that regulate MID1 expression. MicroRNAs (miRNA) are small non-coding RNAs that recognize specific sequences in their target mRNAs. Upon binding, miRNAs typically downregulate expression of these targets. Here, we identified four miRNAs, miR-19, miR-340, miR-374 and miR-542…
Characterisation of CDKL5 Transcript Isoforms in Human and Mouse.
2016
Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5) cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brai…