Search results for "Coherent"

showing 10 items of 303 documents

Oscillations of the purity in the repeated-measurement-based generation of quantum states

2008

Repeated observations of a quantum system interacting with another one can drive the latter toward a particular quantum state, irrespectively of its initial condition, because of an {\em effective non-unitary evolution}. If the target state is a pure one, the degree of purity of the system approaches unity, even when the initial condition of the system is a mixed state. In this paper we study the behavior of the purity from the initial value to the final one, that is unity. Depending on the parameters, after a finite number of measurements, the purity exhibits oscillations, that brings about a lower purity than that of the initial state, which is a point to be taken care of in concrete appl…

PhysicsQuantum PhysicsQuantum opticFOS: Physical sciencesTransition of stateQuantum capacitySettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsQuantum stateQuantum mechanicsQuantum processFoundations of quantum mechanicCoherent control of atomic interactions with photonQuantum systemQuantum operationInitial value problemQuantum Physics (quant-ph)Quantum computer
researchProduct

Extraction of a squeezed state in a field mode via repeated measurements on an auxiliary quantum particle

2009

The dynamics of a system, consisting of a particle initially in a Gaussian state interacting with a field mode, under the action of repeated measurements performed on the particle, is examined. It is shown that regardless of its initial state the field is distilled into a squeezed state. The dependence on the physical parameters of the dynamics is investigated.

PhysicsQuantum PhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciField (physics)GaussianDynamics (mechanics)FOS: Physical sciencesState (functional analysis)Quantum PhysicsAtomic and Molecular Physics and OpticsAction (physics)Extraction squeezed state repeated measurementssymbols.namesakeQuantum mechanicssymbolsParticleAtomic physicsGround stateQuantum Physics (quant-ph)Distillation Repeated measurementsSqueezed coherent state
researchProduct

Noncritically squeezed light via spontaneous rotational symmetry breaking.

2007

We theoretically address squeezed light generation through the spontaneous breaking of the rotational invariance occuring in a type I degenerate optical parametric oscillator (DOPO) pumped above threshold. We show that a DOPO with spherical mirrors, in which the signal and idler fields correspond to first order Laguerre-Gauss modes, produces a perfectly squeezed vacuum with the shape of a Hermite-Gauss mode, within the linearized theory. This occurs at any pumping level above threshold, hence the phenomenon is non-critical. Imperfections of the rotational symmetry, due e.g. to cavity anisotropy, are shown to have a small impact, hence the result is not singular.

PhysicsQuantum PhysicsSpontaneous symmetry breakingDegenerate energy levelsRotational symmetryFOS: Physical sciencesPhysics::OpticsGeneral Physics and AstronomyCurved mirrorExplicit symmetry breakingQuantum mechanicsOptical parametric oscillatorAtomic physicsQuantum Physics (quant-ph)AnisotropySqueezed coherent statePhysical review letters
researchProduct

Spontaneous symmetry breaking as a resource for noncritically squeezed light

2010

[EN] In the last years we have proposed the use of the mechanism of spontaneous symmetry breaking with the purpose of generating perfect quadrature squeezing. Here we review previous work dealing with spatial (translational and rotational) symmetries, both on optical parametric oscillators and four-wave mixing cavities, as well as present new results. We then extend the phenomenon to the polarization state of the signal field, hence introducing spontaneous polarization symmetry breaking. Finally we propose a Jaynes-Cummings model in which the phenomenon can be investigated at the singlephoton-pair level in a non-dissipative case, with the purpose of understanding it from a most fundamental …

PhysicsQuantum PhysicsSqueezed statesSpontaneous symmetry breakingFOS: Physical sciencesOptical parametric oscillatorsSignal fieldSymmetry breakingPolarization (waves)Spontaneous polarizationQuantum mechanicsFISICA APLICADAHomogeneous spaceFour-wave mixing cavitiesSymmetry breakingQuantum Physics (quant-ph)Squeezed coherent stateParametric statistics
researchProduct

Mutual information and spontaneous symmetry breaking

2015

We show that the metastable, symmetry-breaking ground states of quantum many-body Hamiltonians have vanishing quantum mutual information between macroscopically separated regions, and are thus the most classical ones among all possible quantum ground states. This statement is obvious only when the symmetry-breaking ground states are simple product states, e.g. at the factorization point. On the other hand, symmetry-breaking states are in general entangled along the entire ordered phase, and to show that they actually feature the least macroscopic correlations compared to their symmetric superpositions is highly non trivial. We prove this result in general, by considering the quantum mutual …

PhysicsQuantum discordQuantum PhysicsStrongly Correlated Electrons (cond-mat.str-el)FOS: Physical sciencesQuantum capacityQuantum entanglementCoherent information01 natural sciencesQuantum relative entropyAtomic and Molecular Physics and Optics010305 fluids & plasmasCondensed Matter - Strongly Correlated ElectronsQuantum mechanicsAtomic and Molecular Physics0103 physical sciencesand Optics010306 general physicsQuantum mutual informationAmplitude damping channelmutual informationQuantum Physics (quant-ph)Joint quantum entropy
researchProduct

The su(1,1) Tavis-Cummings model

1998

A generic su(1,1) Tavis-Cummings model is solved both by the quantum inverse method and within a conventional quantum-mechanical approach. Examples of corresponding quantum dynamics including squeezing properties of the su(1,1) Perelomov coherent states for the multiatom case are given.

PhysicsQuantum discordQuantum dynamicsGeneral Physics and AstronomyStatistical and Nonlinear PhysicsQuantum Physics16. Peace & justice01 natural sciences010305 fluids & plasmasOpen quantum systemQuantum mechanicsQuantum process0103 physical sciencesQuantum operationCoherent statesQuantum algorithmQuantum inverse scattering method010306 general physicsMathematical PhysicsJournal of Physics A: Mathematical and General
researchProduct

Noncritical quadrature squeezing in two-transverse-mode optical parametric oscillators

2010

In this article we explore the quantum properties of a degenerate optical parametric oscillator when it is tuned to the first family of transverse modes at the down-converted frequency. Recently we found [C. Navarrete-Benlloch et al., Phys. Rev. Lett. 100, 203601 (2008)] that above threshold a TEM${}_{10}$ mode following a random rotation in the transverse plane emerges in this system (we denote it as the bright mode), breaking thus its rotational invariance. Then, owing to the mode orientation being undetermined, we showed that the phase quadrature of the transverse mode orthogonal to this one (denoted as the dark mode) is perfectly squeezed at any pump level and without an increase in the…

PhysicsQuantum mechanicsDegenerate energy levelsOptical parametric oscillatorRotational invarianceSymmetry breakingParametric oscillatorOptical parametric amplifierAtomic and Molecular Physics and OpticsTransverse modeSqueezed coherent statePhysical Review A
researchProduct

Electronuclear sum rules

2008

PhysicsQuantum mechanicsGiant resonanceQuantum electrodynamicsMomentum transferTransition densityIncoherent scatterSum rule in quantum mechanics
researchProduct

Coherent control of stimulated emission process inside one-dimensional photonic crystals

2005

The control of the stimulated emission processes in a 1D PC is discussed. A non-canonical quantization is adopted (QNM). The decay rate of the stimulated emission depends on the cavity and phase-difference of the pumps.

PhysicsQuantum opticsQuantitative Biology::Neurons and Cognitionbusiness.industryAstrophysics::High Energy Astrophysical PhenomenaProcess (computing)Physics::OpticsOptical couplingQuantization (physics)Coherent controlOptoelectronicsSpontaneous emissionStimulated emissionbusinessAstrophysics::Galaxy AstrophysicsPhotonic crystal
researchProduct

Quantum control of ground-state rotational coherence in a linear molecule

2000

We present an experimental and theoretical investigation of the quantum control of ground-state rotational coherence in a linear molecule. A sequence of two temporally separated laser pulses creates a rotational superposition state in ${\mathrm{CO}}_{2}$ whose evolution is monitored through a polarization technique. We study the influence of the phase difference between the two pulses. We show that the overlapping of the two wave packets, produced by each pulse, gives rise to quantum interference that affects the orientational anisotropy of the sample. Because of the large number of coherently excited levels, the interference produces well-separated temporal structures, whose magnitude can …

PhysicsQuantum opticsQuantum phase transitionWAVE-PACKETSTRANSITIONSAtomic and Molecular Physics and OpticsPULSESTIME-RESOLVED DYNAMICSQuantum error correctionExcited stateQuantum mechanicsPrincipal quantum numberINDUCED CONTINUUM STRUCTURECoherent statesIONIZATIONAtomic physicsLASER CONTROLGround stateCoherence (physics)
researchProduct