Search results for "Complete"

showing 10 items of 490 documents

Suzukiʼs type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces

2012

Abstract Recently, Suzuki [T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008) 1861–1869] proved a fixed point theorem that is a generalization of the Banach contraction principle and characterizes the metric completeness. In this paper we prove an analogous fixed point result for a self-mapping on a partial metric space or on a partially ordered metric space. Our results on partially ordered metric spaces generalize and extend some recent results of Ran and Reurings [A.C.M. Ran, M.C. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004…

Discrete mathematicsPartial metric spacesPartially ordered metric spacesInjective metric spaceMathematics::General TopologyPartial metric completenessEquivalence of metricsFixed-point propertyFixed points Common fixed points Partial metric spaces Partially ordered metric spaces Partial metric completenessConvex metric spaceIntrinsic metricLeast fixed pointFixed pointsMetric spaceSettore MAT/05 - Analisi MatematicaCommon fixed pointsGeometry and TopologyMetric differentialMathematicsTopology and its Applications
researchProduct

The convolution operation on the spectra of algebras of symmetric analytic functions

2012

Abstract We show that the spectrum of the algebra of bounded symmetric analytic functions on l p , 1 ≤ p + ∞ with the symmetric convolution operation is a commutative semigroup with the cancellation law for which we discuss the existence of inverses. For p = 1 , a representation of the spectrum in terms of entire functions of exponential type is obtained which allows us to determine the invertible elements.

Discrete mathematicsPower sum symmetric polynomialTriple systemSpectra of algebrasApplied MathematicsSymmetric polynomialsStanley symmetric functionComplete homogeneous symmetric polynomialSymmetric convolutionSymmetric functionEntire functions of exponential typeElementary symmetric polynomialRing of symmetric functionsPolynomials and analytic functions on Banach spacesAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Multi-valued $$F$$ F -contractions in 0-complete partial metric spaces with application to Volterra type integral equation

2013

We study the existence of fixed points for multi-valued mappings that satisfy certain generalized contractive conditions in the setting of 0-complete partial metric spaces. We apply our results to the solution of a Volterra type integral equation in ordered 0-complete partial metric spaces.

Discrete mathematicsPure mathematicsAlgebra and Number Theory0-completenepartial metric spacesApplied MathematicsInjective metric spaceclosed multi-valued mappingT-normEquivalence of metricsIntrinsic metricConvex metric spaceComputational MathematicsUniform continuityMetric spacefixed pointSettore MAT/05 - Analisi MatematicaFréchet spaceGeometry and TopologyF-contractionAnalysisMathematicsRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas
researchProduct

L-fuzzy syntopogenous structures, Part I: Fundamentals and application to L-fuzzy topologies, L-fuzzy proximities and L-fuzzy uniformities

2013

Abstract We introduce the concept of an L-fuzzy syntopogenous structure where L is a complete lattice endowed with an implicator ↦ : L × L → L satisfying certain properties (in particular, as L one can take an MV-algebra). As special cases our L-fuzzy syntopogenous structures contain classical Csaszar syntopogenous structures, Katsaras–Petalas fuzzy syntopogenous structures as well as fuzzy syntopogeneous structures introduced in the previous work of the second named author (A. Sostak, Fuzzy syntopogenous structures, Quaest. Math. 20 (1997) 431–461). Basic properties of the category of L-fuzzy syntopogenous spaces are studied; categories of L-fuzzy topological spaces, L-fuzzy proximity spac…

Discrete mathematicsPure mathematicsComplete latticeMathematics::General MathematicsArtificial IntelligenceLogicStructure (category theory)Topological spaceCompletely distributive latticeNetwork topologyFuzzy logicMathematicsFuzzy Sets and Systems
researchProduct

VECTOR MEASURES WITH VARIATION IN A BANACH FUNCTION SPACE

2003

Let E be a Banach function space and X be an arbitrary Banach space. Denote by E(X) the Kothe-Bochner function space defined as the set of measurable functions f : Ω → X such that the nonnegative functions ‖f‖X : Ω → [0,∞) are in the lattice E. The notion of E-variation of a measure —which allows to recover the pvariation (for E = Lp), Φ-variation (for E = LΦ) and the general notion introduced by Gresky and Uhl— is introduced. The space of measures of bounded E-variation VE(X) is then studied. It is shown, among other things and with some restriction of absolute continuity of the norms, that (E(X))∗ = VE′ (X ∗), that VE(X) can be identified with space of cone absolutely summing operators fr…

Discrete mathematicsPure mathematicsSquare-integrable functionBergman spaceFunction spaceInfinite-dimensional vector functionBochner spaceLp spaceQuotient space (linear algebra)Complete metric spaceMathematicsFunction Spaces
researchProduct

Some fixed point results for multi-valued mappings in partial metric spaces

2013

Abstract In this paper, we obtain some fixed point results for multi-valued mappings in partial metric spaces. Our results unify, generalize and complement various known comparable results from the current literature. An example is also included to illustrate the main result in the paper. MSC:46S40, 47H10, 54H25.

Discrete mathematicsPure mathematicscompleteness.Injective metric spaceApplied MathematicsIntrinsic metricConvex metric spaceMetric spacefixed pointSettore MAT/05 - Analisi Matematicamulti-valued mappingMetric (mathematics)partial Hausdorff metricMetric mapGeometry and TopologyMetric differentialCoincidence pointMathematics
researchProduct

On the stability of the Bohl — Brouwer — Schauder Theorem

1996

Discrete mathematicsSchauder fixed point theoremDual spaceApplied MathematicsLocally convex topological vector spaceFixed pointKakutani fixed-point theoremReflexive spaceAnalysisComplete metric spaceTopological vector spaceMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

Countably compact weakly Whyburn spaces

2015

The weak Whyburn property is a generalization of the classical sequential property that was studied by many authors. A space X is weakly Whyburn if for every non-closed set \({A \subset X}\) there is a subset \({B \subset A}\) such that \({\overline{B} \setminus A}\) is a singleton. We prove that every countably compact Urysohn space of cardinality smaller than the continuum is weakly Whyburn and show that, consistently, the Urysohn assumption is essential. We also give conditions for a (countably compact) weakly Whyburn space to be pseudoradial and construct a countably compact weakly Whyburn non-pseudoradial regular space, which solves a question asked by Angelo Bella in private communica…

Discrete mathematicsSingletonGeneralizationGeneral Mathematics010102 general mathematicsGeneral Topology (math.GN)Mathematics::General TopologyPrivate communicationUrysohn and completely Hausdorff spacesWeak Whyburn property convergence Lindelof P -space Urysohn countably compact pseudoradial.Space (mathematics)01 natural sciences010101 applied mathematicsCombinatoricsMathematics::LogicCardinalityFOS: MathematicsRegular spaceSettore MAT/03 - GeometriaContinuum (set theory)0101 mathematicsMathematicsMathematics - General Topology
researchProduct

Minimum node weight spanning trees searching algorithm for broadcast transmission in sensor networks

2017

A minimum node weight spanning tree in a weighted, directed graph is a tree whose node with maximum out-weight is minimal among all spanning trees. This type of trees are important because they appear in the solutions of the maximum lifetime broadcasting problem in wireless sensor networks. In a complete graph build of N nodes there are NN-2 spanning trees and to find such trees it is necessary to perform more than O(NN-2) operations. In this paper we propose an algorithm for searching the minimum node weight spanning trees in the graph. In the proposed algorithm, instead of calculating the symbolic determinant of the generalized Laplacian matrix, numerical operations on its exponents are p…

Discrete mathematicsSpanning treeComputer sciencegraph theory010401 analytical chemistryDecision treeComplete graph020206 networking & telecommunications02 engineering and technologyDirected graphspanning trees01 natural sciences0104 chemical sciencessensor networksSearch algorithm0202 electrical engineering electronic engineering information engineeringGraph (abstract data type)Algorithm designLaplacian matrixdata broadcasting2017 Twelfth International Conference on Digital Information Management (ICDIM)
researchProduct

Orlicz–Sobolev extensions and measure density condition

2010

Abstract We study the extension properties of Orlicz–Sobolev functions both in Euclidean spaces and in metric measure spaces equipped with a doubling measure. We show that a set E ⊂ R satisfying a measure density condition admits a bounded linear extension operator from the trace space W 1 , Ψ ( R n ) | E to W 1 , Ψ ( R n ) . Then we show that a domain, in which the Sobolev embedding theorem or a Poincare-type inequality holds, satisfies the measure density condition. It follows that the existence of a bounded, possibly non-linear extension operator or even the surjectivity of the trace operator implies the measure density condition and hence the existence of a bounded linear extension oper…

Discrete mathematicsTransverse measureComplete measureApplied MathematicsBounded functionComplex measureσ-finite measureMeasure (mathematics)AnalysisSobolev inequalityTrace operatorMathematicsJournal of Mathematical Analysis and Applications
researchProduct