Search results for "Computational Mathematic"
showing 10 items of 987 documents
Group Identities on Units of Group Algebras
2000
Abstract Let U be the group of units of the group algebra FG of a group G over a field F . Suppose that either F is infinite or G has an element of infinite order. We characterize groups G so that U satisfies a group identity. Under the assumption that G modulo the torsion elements is nilpotent this gives a complete classification of such groups. For torsion groups this problem has already been settled in recent years.
The action of a compact Lie group on nilpotent Lie algebras of type {{n,2}}
2015
Abstract We classify finite-dimensional real nilpotent Lie algebras with 2-dimensional central commutator ideals admitting a Lie group of automorphisms isomorphic to SO 2 ( ℝ ) ${{\mathrm{SO}}_{2}(\mathbb{R})}$ . This is the first step to extend the class of nilpotent Lie algebras 𝔥 ${{\mathfrak{h}}}$ of type { n , 2 } ${\{n,2\}}$ to solvable Lie algebras in which 𝔥 ${{\mathfrak{h}}}$ has codimension one.
A Complete, Exact and Efficient Implementation for Computing the Edge-Adjacency Graph of an Arrangement of Quadrics
2011
International audience; We present a complete, exact and efficient implementation to compute the edge-adjacency graph of an arrangement of quadrics, i.e. surfaces of algebraic degree 2. This is a major step towards the computation of the full 3D arrangement. We enhanced an implementation for an exact parameterization of the intersection curves of two quadrics, such that we can compute the exact parameter value for intersection points and from that the edge-adjacency graph of the arrangement. Our implementation is complete in the sense that it can handle all kinds of inputs including all degenerate ones, i.e. singularities or tangential intersection points. It is exact in that it always comp…
Estimates of the modeling error generated by homogenization of an elliptic boundary value problem
2016
Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)
The Abelian Kernel of an Inverse Semigroup
2020
The problem of computing the abelian kernel of a finite semigroup was first solved by Delgado describing an algorithm that decides whether a given element of a finite semigroup S belongs to the abelian kernel. Steinberg extended the result for any variety of abelian groups with decidable membership. In this paper, we used a completely different approach to complete these results by giving an exact description of the abelian kernel of an inverse semigroup. An abelian group that gives this abelian kernel was also constructed.
Explicit proton transfer in classical molecular dynamics simulations.
2014
We present Hydrogen Dynamics (HYDYN), a method that allows explicit proton transfer in classical force field molecular dynamics simulations at thermodynamic equilibrium. HYDYN reproduces the characteristic properties of the excess proton in water, from the special pair dance, to the continuous fluctuation between the limiting Eigen and Zundel complexes, and the water reorientation beyond the first solvation layer. Advantages of HYDYN with respect to existing methods are computational efficiency, microscopic reversibility, and easy parameterization for any force field peerReviewed
Generalized wave propagation problems and discrete exterior calculus
2018
We introduce a general class of second-order boundary value problems unifying application areas such as acoustics, electromagnetism, elastodynamics, quantum mechanics, and so on, into a single framework. This also enables us to solve wave propagation problems very efficiently with a single software system. The solution method precisely follows the conservation laws in finite-dimensional systems, whereas the constitutive relations are imposed approximately. We employ discrete exterior calculus for the spatial discretization, use natural crystal structures for three-dimensional meshing, and derive a “discrete Hodge” adapted to harmonic wave. The numerical experiments indicate that the cumulat…
Acoustic wave guides as infinite-dimensional dynamical systems
2015
We prove the unique solvability, passivity/conservativity and some regularity results of two mathematical models for acoustic wave propagation in curved, variable diameter tubular structures of finite length. The first of the models is the generalised Webster's model that includes dissipation and curvature of the 1D waveguide. The second model is the scattering passive, boundary controlled wave equation on 3D waveguides. The two models are treated in an unified fashion so that the results on the wave equation reduce to the corresponding results of approximating Webster's model at the limit of vanishing waveguide intersection.
Shape identification in inverse medium scattering problems with a single far-field pattern
2016
Consider time-harmonic acoustic scattering from a bounded penetrable obstacle $D\subset {\mathbb R}^N$ embedded in a homogeneous background medium. The index of refraction characterizing the material inside $D$ is supposed to be Holder continuous near the corners. If $D\subset {\mathbb R}^2$ is a convex polygon, we prove that its shape and location can be uniquely determined by the far-field pattern incited by a single incident wave at a fixed frequency. In dimensions $N \geq 3$, the uniqueness applies to penetrable scatterers of rectangular type with additional assumptions on the smoothness of the contrast. Our arguments are motivated by recent studies on the absence of nonscattering waven…
Liftings and extensions of operators in Brownian setting
2020
We investigate the operators T on a Hilbert space H which have 2-isometric liftings S with the property S ∗ S H ⊂ H . We show that such liftings are closely related to some extensions of T, which h...