Search results for "Conformal map"
showing 10 items of 125 documents
Conformal invariance of the writhe of a knot
2008
We give a new proof of an old theorem by Banchoff and White 1975 that claims that the writhe of a knot is conformally invariant.
Nonexistence of Quasiconformal Maps Between Certain Metric Measure Spaces
2013
We provide new conditions that ensure that two metric measure spaces are not quasiconformally equivalent. As an application, we deduce that there exists no quasiconformal map between the sub-Riemannian Heisenberg and roto-translation groups.
Dimension gap under conformal mappings
2012
Abstract We give an estimate for the Hausdorff gauge dimension of the boundary of a simply connected planar domain under p -integrability of the hyperbolic metric, p > 1 . This estimate does not degenerate when p tends to one; for p = 1 the boundary can even have positive area. The same phenomenon is extended to general planar domains in terms of the quasihyperbolic metric. We also give an example which shows that our estimates are essentially sharp.
Generalized evolutes, vertices and conformal invariants of curves in Rn + 1
1999
Abstract We define the generalized evolute of a curve in ( n + 1)-space and find a duality relation between them. We also prove that the conformal torsion is a function of the speed of the generalized evolute and that the singular points of the generalized evolute (vertices) are conformal invariants.
Conformal curvatures of curves in
2001
Abstract We define a complete set of conformal invariants for pairs of spheres in and obtain from these the expressions of the conformal curvatures of curves in (n + 1)-space in terms of the Euclidean invariants.
Pointwise characterizations of Besov and Triebel–Lizorkin spaces and quasiconformal mappings
2011
Abstract In this paper, the authors characterize, in terms of pointwise inequalities, the classical Besov spaces B ˙ p , q s and Triebel–Lizorkin spaces F ˙ p , q s for all s ∈ ( 0 , 1 ) and p , q ∈ ( n / ( n + s ) , ∞ ] , both in R n and in the metric measure spaces enjoying the doubling and reverse doubling properties. Applying this characterization, the authors prove that quasiconformal mappings preserve F ˙ n / s , q s on R n for all s ∈ ( 0 , 1 ) and q ∈ ( n / ( n + s ) , ∞ ] . A metric measure space version of the above morphism property is also established.
Optimal Extensions of Conformal Mappings from the Unit Disk to Cardioid-Type Domains
2019
AbstractThe conformal mapping $$f(z)=(z+1)^2 $$ f ( z ) = ( z + 1 ) 2 from $${\mathbb {D}}$$ D onto the standard cardioid has a homeomorphic extension of finite distortion to entire $${\mathbb {R}}^2 .$$ R 2 . We study the optimal regularity of such extensions, in terms of the integrability degree of the distortion and of the derivatives, and these for the inverse. We generalize all outcomes to the case of conformal mappings from $${\mathbb {D}}$$ D onto cardioid-type domains.
Dimension gap under Sobolev mappings
2015
Abstract We prove an essentially sharp estimate in terms of generalized Hausdorff measures for the images of boundaries of Holder domains under continuous Sobolev mappings, satisfying suitable Orlicz–Sobolev conditions. This estimate marks a dimension gap, which was first observed in [2] for conformal mappings.
Bounded compositions on scaling invariant Besov spaces
2012
For $0 < s < 1 < q < \infty$, we characterize the homeomorphisms $��: \real^n \to \real^n$ for which the composition operator $f \mapsto f \circ ��$ is bounded on the homogeneous, scaling invariant Besov space $\dot{B}^s_{n/s,q}(\real^n)$, where the emphasis is on the case $q\not=n/s$, left open in the previous literature. We also establish an analogous result for Besov-type function spaces on a wide class of metric measure spaces as well, and make some new remarks considering the scaling invariant Triebel-Lizorkin spaces $\dot{F}^s_{n/s,q}(\real^n)$ with $0 < s < 1$ and $0 < q \leq \infty$.
Generalization of the model-independent Laurent–Pietarinen single-channel pole-extraction formalism to multiple channels
2016
A method to extract resonance pole information from single-channel partial-wave amplitudes based on a Laurent (Mittag-Leffler) expansion and conformal mapping techniques has recently been developed. This method has been applied to a number of reactions and provides a model-independent extraction procedure which is particularly useful in cases where a set of amplitudes is available only at discrete energies. This method has been generalized and applied to the case of a multi-channel fit, where several sets of amplitudes are analyzed simultaneously. The importance of unitarity constraints is discussed. The final result provides a powerful, model-independent tool for analyzing partial-wave amp…