Search results for "Conjugacy class"
showing 10 items of 50 documents
The prime graph on class sizes of a finite group has a bipartite complement
2020
Abstract Let G be a finite group, and let cs ( G ) denote the set of sizes of the conjugacy classes of G. The prime graph built on cs ( G ) , that we denote by Δ ( G ) , is the (simple undirected) graph whose vertices are the prime divisors of the numbers in cs ( G ) , and two distinct vertices p, q are adjacent if and only if pq divides some number in cs ( G ) . A rephrasing of the main theorem in [8] is that the complement Δ ‾ ( G ) of the graph Δ ( G ) does not contain any cycle of length 3. In this paper we generalize this result, showing that Δ ‾ ( G ) does not contain any cycle of odd length, i.e., it is a bipartite graph. In other words, the vertex set V ( G ) of Δ ( G ) is covered b…
Quadratic characters in groups of odd order
2009
Abstract We prove that in a finite group of odd order, the number of irreducible quadratic characters is the number of quadratic conjugacy classes.
Conjugacy classes, characters and products of elements
2019
Recently, Baumslag and Wiegold proved that a finite group $G$ is nilpotent if and only if $o(xy)=o(x)o(y)$ for every $x,y\in G$ of coprime order. Motivated by this result, we study the groups with the property that $(xy)^G=x^Gy^G$ and those with the property that $\chi(xy)=\chi(x)\chi(y)$ for every complex irreducible character $\chi$ of $G$ and every nontrivial $x, y \in G$ of pairwise coprime order. We also consider several ways of weakening the hypothesis on $x$ and $y$. While the result of Baumslag and Wiegold is completely elementary, some of our arguments here depend on (parts of) the classification of finite simple groups.
Powers of conjugacy classes in a finite groups
2020
[EN] The aim of this paper is to show how the number of conjugacy classes appearing in the product of classes affect the structure of a finite group. The aim of this paper was to show several results about solvability concerning the case in which the power of a conjugacy class is a union of one or two conjugacy classes. Moreover, we show that the above conditions can be determined through the character table of the group.
A combinatorial view on string attractors
2021
Abstract The notion of string attractor has recently been introduced in [Prezza, 2017] and studied in [Kempa and Prezza, 2018] to provide a unifying framework for known dictionary-based compressors. A string attractor for a word w = w 1 w 2 ⋯ w n is a subset Γ of the positions { 1 , … , n } , such that all distinct factors of w have an occurrence crossing at least one of the elements of Γ. In this paper we explore the notion of string attractor by focusing on its combinatorial properties. In particular, we show how the size of the smallest string attractor of a word varies when combinatorial operations are applied and we deduce that such a measure is not monotone. Moreover, we introduce a c…
Minimal forbidden patterns of multi-dimensional shifts
2005
We study whether the entropy (or growth rate) of minimal forbidden patterns of symbolic dynamical shifts of dimension 2 or more, is a conjugacy invariant. We prove that the entropy of minimal forbidden patterns is a conjugacy invariant for uniformly semi-strongly irreducible shifts. We prove a weaker invariant in the general case.
The probability that $x$ and $y$ commute in a compact group
2010
We show that a compact group $G$ has finite conjugacy classes, i.e., is an FC-group if and only if its center $Z(G)$ is open if and only if its commutator subgroup $G'$ is finite. Let $d(G)$ denote the Haar measure of the set of all pairs $(x,y)$ in $G \times G$ for which $[x,y] = 1$; this, formally, is the probability that two randomly picked elements commute. We prove that $d(G)$ is always rational and that it is positive if and only if $G$ is an extension of an FC-group by a finite group. This entails that $G$ is abelian by finite. The proofs involve measure theory, transformation groups, Lie theory of arbitrary compact groups, and representation theory of compact groups. Examples and re…
Q7-branes and their coupling to IIB supergravity
2007
We show how, by making use of a new basis of the IIB supergravity axion-dilaton coset, SL(2,R)/SO(2), 7-branes that belong to different conjugacy classes of the duality group SL(2,R) naturally couple to IIB supergravity with appropriate source terms characterized by an SL(2,R) charge matrix Q. The conjugacy classes are determined by the value of the determinant of Q. The (p,q) 7-branes are the branes in the conjugacy class detQ = 0. The 7-branes in the conjugacy class detQ > 0 are labelled by three numbers (p,q,r) which parameterize the matrix Q and will be called Q7-branes. We construct the full bosonic Wess--Zumino term for the Q7-branes. In order to realize a gauge invariant coupling …
Some topological invariants for three-dimensional flows
2001
We deal here with vector fields on three manifolds. For a system with a homoclinic orbit to a saddle-focus point, we show that the imaginary part of the complex eigenvalues is a conjugacy invariant. We show also that the ratio of the real part of the complex eigenvalue over the real one is invariant under topological equivalence. For a system with two saddle-focus points and an orbit connecting the one-dimensional invariant manifold of those points, we compute a conjugacy invariant related to the eigenvalues of the vector field at the singularities. (c) 2001 American Institute of Physics.
Asymptotic Equivalence of Difference Equations in Banach Space
2014
Conjugacy technique is applied to analysis asymptotic equivalence of nonautonomous linear and semilinear difference equations in Banach space.