Search results for "Control Engineering"
showing 10 items of 435 documents
Prosthetic design and prototype development
2020
Abstract In recent years, there has been worldwide interest in improvement of the mobility of people with lower-limb amputations. Despite significant development of new technologies over the last decade, commercial below-knee and above-knee prostheses are still energetically passive devices. However, many locomotive functions, like walking up stairs and slopes, need significant power in the knee and ankle joints. The additional power for carrying out these previously mentioned activities needs to be achieved by means of external energy sources, which should be integral prosthetic components. This chapter presents preliminary investigations and development towards an active robotic prosthesi…
Input-Output Feedback Linearization Control of Linear Induction Motors Including the dynamic End-Effects
2014
This paper proposes the theoretical framework and the consequent application of the input-output feedback linearization (FL) control technique to linear induction motors (LIM). LIM, additionally to RIM, presents other strong non-linearities caused by the dynamic end effects, leading to a space-vector dynamic model with time-varying inductance and resistance terms and a braking force term. This paper, starting from a recently developed dynamic model of the LIM taking into consideration its end effects, defines a FL technique suited for LIMs, since it inherently considers its dynamic end effects. The proposed approach has been validated experimentally on a suitably developed test set-up. Furt…
The performance investigation of viscoelastic hybrid models in vehicle crash event representation
2011
Aurthor's version of a chapter published in the book: Proceedings of the 18th IFAC World Congress 2011. Also available from the publisher at: http://dx.doi.org/10.3182/20110828-6-IT-1002.00284
Kinematic Solutions of a 7 DOF Robotic Arm Using Redundancy Circle and Fuzzy Models
2014
In this paper we have presented a method to solve the inverse kinematics problem of a redundant robotic arm with seven degrees of freedom and a human like workspace based on mathematical equations, Fuzzy Logic implementation and Simulink models. For better visualization of the kinematics simulation a CAD model that mimics the real robotic arm was created into SolidWorks® and then the CAD parts were converted into SimMechanics model.
Sequential design of multioverlapping controllers for structural vibration control of tall buildings under seismic excitation
2012
In this article, a computationally effective strategy to obtain multioverlapping controllers via the inclusion principle is applied to design a state-feedback multioverlapping linear-quadratic regulator controller for a 20-story building. The proposed semidecentralized controller only requires state information of neighboring stories to compute the corresponding control actions. This particular information exchange configuration allows introducing a dramatic reduction in the transmission range required for a wireless implementation of the communications system. More specifically, just a one-story transmission range is required by the proposed multioverlapping controller, while a full-buildi…
Observer-Based Robust Control for Hydraulic Velocity Control System
2013
Published version of an article in the journal: Mathematical Problems in Engineering. Also available from the publisher at: http://dx.doi.org/10.1155/2013/689132 Open access This paper investigates the problems of robust stabilization and robust control for the secondary component speed control system with parameters uncertainty and load disturbance. The aim is to enhance the control performance of hydraulic system based on Common Pressure Rail (CPR). Firstly, a mathematical model is presented to describe the hydraulic control system. Then a novel observer is proposed, and an observed-based control strategy is designed such that the closed-loop system is asymptotically stable and satisfies …
A Laboratory Project for Advanced Control Methods: Control of a Neutralization Process
2003
Abstract A neutralization process is used in a laboratory project for experimenting advanced control techniques. Students may choose among several techniques to experience the behaviour of advanced controller action: adaptive control, GMG control, fuzzy control, self tuning fuzzy control, neural control, neuro-fuzzy control. The experience in advanced self tuning controller based on fuzzy logic is proposed for the control of a neutralization process. The test of a self tuning controller based on fuzzy logic is a very important case because the resulting structure of the controller is easy to implement and modify: the final results are compared with those deriving from the application of a c…
An adaptive control law for robotic manipulator without velocity feedback
2003
In this paper, a new adaptive control law is designed for robotic manipulators, based on the use of reference velocities instead of the actual ones and feedback signals generated from position errors. The law in question is suitable for trajectory tracking and positioning tasks. Its peculiarities are implementation without velocity measurements and estimation, high signal-to-noise ratio in control torques and absence of parameter drift in positioning tasks. Experimental tests are shown with the aim to confirm the validity of the control law and to illustrate its actual effects on the behaviour of the system.
Globally convergent adaptive and robust control of robotic manipulators for trajectory tracking
2004
This paper deals with a globally convergent adaptive and robust control of robotic manipulators for trajectory tracking in the presence of friction modelled as static nonlinearities. Two control loops are designed according to the cascade control scheme: (a) an inner adaptive control loop, which includes computed torque and PD control actions and friction compensation and (b) an outer robust control loop for unmodelled dynamics compensation. With reference to item (a), two friction compensation schemes are presented; one of them uses both the reference and the actual velocities, whereas the other employs only the actual velocity. Experimental tests carried out on a two-link SCARA manipulato…
A CONTROL LAW FOR ROBOTIC MANIPULATORS BASED ON A FILTERED SIGNAL TO GENERATE PD ACTION AND VELOCITY ESTIMATES
2007
This paper deals with an adaptive control law for robotic manipulators based on a filtered signal to generate both the PD action and velocity estimates of the joints, suitable for trajectory tracking tasks, with the particular aim of reducing the harmonic content of the mechanical torques developed at the joints and thus avoiding excitation of unmodelled dynamics and instability. The practical aspects relative to the implementation of the control law are considered as relevant and, consequently, are detailed. In particular, several methods suitable to compute velocity estimates are discussed and compared with the method described in the paper. All of the above methods are illustrated by mea…