Search results for "Control"

showing 10 items of 13168 documents

Classification and Review of Pump-Controlled Differential Cylinder Drives

2019

Pump-controlled hydraulic cylinder drives may offer improved energy efficiency, compactness, and plug-and-play installation compared to conventional valve-controlled hydraulic systems and thus have the potential of replacing conventional hydraulic systems as well as electro-mechanical alternatives. Since the late 1980s, research into how to configure the hydraulic circuit of pump-controlled cylinder drives has been ongoing, especially in terms of compensating the uneven flow requirements required by a differential cylinder. Recently, research has also focused on other aspects such as replacing a vented oil tank with a small-volume pressurized accumulator including the consequences of this i…

0209 industrial biotechnologyControl and OptimizationComputer science020209 energyThrottleless hydraulicsEnergy Engineering and Power Technology02 engineering and technologyLinear hydraulic actuationlcsh:TechnologyAutomotive engineering020901 industrial engineering & automationOil tankPump-controlled cylinder drivesDirect-driven hydraulicspump-controlled cylinder drivesThermal0202 electrical engineering electronic engineering information engineeringCylinderElectrical and Electronic EngineeringHydraulic machineryEngineering (miscellaneous)Hydraulic pumpValveless hydraulic driveRenewable Energy Sustainability and the Environmentlcsh:THydraulic circuitdirect-driven hydraulicsAccumulator (energy)VDP::Teknologi: 500Hydraulic cylinderthrottleless hydraulicsVDP::Medisinske Fag: 700::Helsefag: 800linear hydraulic actuationvalveless hydraulic driveEnergy (miscellaneous)Energies
researchProduct

Dynamic Modeling, Energy Analysis, and Path Planning of Spherical Robots on Uneven Terrains

2020

Spherical robots are generally comprised of a spherical shell and an internal actuation unit. These robots have a variety of applications ranging from search and rescue to agriculture. Although one of the main advantages of spherical robots is their capability to operate on uneven surfaces, energy analysis and path planning of such systems have been studied only for flat terrains. This work introduces a novel approach to evaluate the dynamic equations, energy consumption, and separation analysis of these robots rolling on uneven terrains. The presented dynamics modeling, separation analysis, and energy analysis allow us to implement path planning algorithms to find an optimal path. One of t…

0209 industrial biotechnologyControl and OptimizationComputer science0211 other engineering and technologiesBiomedical EngineeringTerrain02 engineering and technologySpherical shellComputer Science::RoboticsVehicle dynamics020901 industrial engineering & automationArtificial IntelligenceMotion planningSearch and rescueComputingMethodologies_COMPUTERGRAPHICS021106 design practice & managementMechanical EngineeringPropellerControl engineeringEnergy consumptionComputer Science ApplicationsSystem dynamicsHuman-Computer InteractionControl and Systems EngineeringPath (graph theory)RobotComputer Vision and Pattern RecognitionIEEE Robotics and Automation Letters
researchProduct

Performance Improvement of a Hydraulic Active/Passive Heave Compensation Winch Using Semi Secondary Motor Control: Experimental and Numerical Verific…

2020

In this paper, a newly developed controller for active heave compensated offshore cranes is compared with state-of-the-art control methods. The comparison is divided into a numerical part on stability margins as well as operational windows and an experimental validation of the expected performance improvement based on a full-scale testing on site with a crane rated to 250 metric tons. Such a crane represents the typical target for the new control method using a combination of active and passive hydraulic actuation on the main winch. The active hydraulic actuation is a hydrostatic transmission with variable-displacement pumps and variable-displacement motors. The new controller employs feedf…

0209 industrial biotechnologyControl and OptimizationComputer scienceEnergy Engineering and Power Technology02 engineering and technologyActive heave compensationlcsh:Technologyactive heave compensationDisplacement (vector)Compensation (engineering)020901 industrial engineering & automationControl theory0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringWinchEngineering (miscellaneous)lcsh:TRenewable Energy Sustainability and the EnvironmentOscillation020208 electrical & electronic engineeringFeed forwardMotor controlVDP::Teknologi: 500winchhydrostatic transmissionPerformance improvementEnergy (miscellaneous)Energies
researchProduct

A Comparison Study of a Novel Self-Contained Electro-Hydraulic Cylinder versus a Conventional Valve-Controlled Actuator—Part 2: Energy Efficiency

2019

This research paper presents the second part of a comparative analysis of a novel self-contained electro-hydraulic cylinder with passive load-holding capability against a state of the art, valve-controlled hydraulic system that is typically used in load-carrying applications. After addressing the control design and motion performance in the first part of the study, the comparison is now focused on the systems&rsquo

0209 industrial biotechnologyControl and OptimizationComputer scienceHydraulicspassive load-holdingenergy recoveryComputerApplications_COMPUTERSINOTHERSYSTEMS02 engineering and technologyAutomotive engineeringlaw.invention020901 industrial engineering & automationlinear actuatorslawload-carrying applications0202 electrical engineering electronic engineering information engineeringHydraulic machineryenergy efficiencyEnergy recoveryVDP::Teknologi: 500::Materialteknologi: 520020208 electrical & electronic engineeringEnergy consumptionLinear actuatorFluid powerControl and Systems Engineeringproportional directional control valvesActuatorself-contained cylinderselectro-hydraulic systemsEfficient energy useActuators
researchProduct

An Input Observer-Based Stiffness Estimation Approach for Flexible Robot Joints

2020

This letter addresses the stiffness estimation problem for flexible robot joints, driven by variable stiffness actuators in antagonistic setups. Due to the difficulties of achieving consistent production of these actuators and the time-varying nature of their internal flexible elements, which are subject to plastic deformation over time, it is currently a challenge to precisely determine the total flexibility torque applied to a robot's joint and the corresponding joint stiffness. Herein, by considering the flexibility torque acting on each motor as an unknown signal and building upon Unknown Input Observer theory, a solution for electrically-driven actuators is proposed, which consists of …

0209 industrial biotechnologyControl and OptimizationFlexibility (anatomy)Observer (quantum physics)Computer scienceBiomedical Engineering02 engineering and technologyCalibration and identificationComputer Science::Robotics020901 industrial engineering & automationArtificial IntelligenceControl theorymedicineTorqueFlexible RobotMechanical Engineeringnatural machine motionStiffness021001 nanoscience & nanotechnologyComputer Science ApplicationsHuman-Computer Interactionmedicine.anatomical_structureControl and Systems EngineeringJoint stiffnessRobotComputer Vision and Pattern Recognitionmedicine.symptomDeformation (engineering)0210 nano-technologyActuatorfailure detection and recoveryIEEE Robotics and Automation Letters
researchProduct

Energy-based fluid–structure model of the vocal folds

2020

AbstractLumped elements models of vocal folds are relevant research tools that can enhance the understanding of the pathophysiology of many voice disorders. In this paper, we use the port-Hamiltonian framework to obtain an energy-based model for the fluid–structure interactions between the vocal folds and the airflow in the glottis. The vocal fold behavior is represented by a three-mass model and the airflow is described as a fluid with irrotational flow. The proposed approach allows to go beyond the usual quasi-steady one-dimensional flow assumption in lumped mass models. The simulation results show that the proposed energy-based model successfully reproduces the oscillations of the vocal …

0209 industrial biotechnologyControl and OptimizationGlottisComputer scienceApplied MathematicsAirflow02 engineering and technologyMechanicsFold (geology)ArticlesConservative vector field01 natural sciencesCompressible flowPhysics::Fluid Dynamics020901 industrial engineering & automationmedicine.anatomical_structureFlow (mathematics)Control and Systems EngineeringComputer Science::SoundVocal folds0103 physical sciencesmedicine010301 acousticsEnergy (signal processing)
researchProduct

TIME-MINIMAL CONTROL OF DISSIPATIVE TWO-LEVEL QUANTUM SYSTEMS: THE INTEGRABLE CASE

2009

The objective of this article is to apply recent developments in geometric optimal control to analyze the time minimum control problem of dissipative two-level quantum systems whose dynamics is governed by the Lindblad equation. We focus our analysis on the case where the extremal Hamiltonian is integrable.

0209 industrial biotechnologyControl and OptimizationIntegrable systemQuantum dynamics[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciences02 engineering and technology01 natural sciences020901 industrial engineering & automation[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesQuantum operation[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]010306 general physicsMathematical PhysicsMathematicsMathematical physicsLindblad equationApplied MathematicsMathematical analysis[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Mathematical Physics (math-ph)[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]16. Peace & justice49K15 70Q05Quantum processDissipative systemQuantum algorithm[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Hamiltonian (control theory)
researchProduct

A Novel Solution for the Elimination of Mode Switching in Pump-Controlled Single-Rod Cylinders

2020

This paper concerns the stability issue of pump-controlled single-rod cylinders, known as mode switching. First, a review of the topic is provided. Thereafter, the most recently proposed solution for the elimination of mode switching is investigated and shown to result in unstable behavior under certain operating conditions. A theoretical analysis is provided demonstrating the underlying mechanisms of this behavior. Based on the analysis, a novel control strategy is proposed and investigated numerically. Proper operation and stability are demonstrated for a wide range of operating conditions, including situations under which the most recently proposed solution results in unstable behavior a…

0209 industrial biotechnologyControl and OptimizationMaterials science020209 energy02 engineering and technologyelectrohydraulic valvesStability (probability)020901 industrial engineering & automationlinear actuatorsControl theorylcsh:TK1001-18410202 electrical engineering electronic engineering information engineeringlcsh:TA401-492large inertia loadsLinear actuatorstabilitylcsh:Production of electric energy or power. Powerplants. Central stationsRange (mathematics)VDP::Teknologi: 500single-pump circuitsmode switching instabilityControl and Systems EngineeringoscillationsMode switchinglcsh:Materials of engineering and construction. Mechanics of materialsActuatorpump-controlled systemsActuators
researchProduct

A Comparison Study of a Novel Self-Contained Electro-Hydraulic Cylinder versus a Conventional Valve-Controlled Actuator—Part 1: Motion Control

2019

This research paper presents the first part of a comparative analysis of a novel self-contained electro-hydraulic cylinder with passive load-holding capability against a state of the art, valve-controlled actuation system that is typically used in load-carrying applications. The study is carried out on a single-boom crane with focus on the control design and motion performance analysis. First, a model-based design approach is carried out to derive the control parameters for both actuation systems using experimentally validated models. The linear analysis shows that the new drive system has higher gain margin, allowing a considerably more aggressive closed-loop position controller. Several b…

0209 industrial biotechnologyControl and OptimizationSettling timeComputer sciencepassive load-holding020209 energy02 engineering and technologyactive damping020901 industrial engineering & automationlinear actuatorsmodeling and simulationControl theoryPosition (vector)load-carrying applications0202 electrical engineering electronic engineering information engineeringOvershoot (signal)feedback control systemsLinear actuatorMotion controlControl and Systems EngineeringRise timeproportional directional control valvesActuatorself-contained cylinderselectro-hydraulic systemslinear control designActuators
researchProduct

Using the Analytic Hierarchy Process (AHP) in Evaluating the Decision of Moving to a Manufacturing Process Based Upon Continuous 5 Axes CNC Machine-t…

2016

Abstract This paper represents the second part of the work described in the paper with the title “Decision-making tool for moving from 3-axes to 5-axes CNC machine-tool”. The problem of using either 3 axes CNC machine-tools or 5 axes CNC machine tools was presented in the first part, together with a fuzzy logic based decision support tool. This time, an AHP approach is used in order to evaluate the decision of moving to a manufacturing process based upon 5 axes machine tools. Three variants were taken into consideration and analysed. The consistency of the proposed approach was evaluated and a sensitivity analysis was also introduced.

0209 industrial biotechnologyDecision support system5 axesbusiness.product_categoryComputer scienceAnalytic hierarchy processcosts02 engineering and technologyFuzzy logicanalytic hierarchy processevaluationConsistency (database systems)020901 industrial engineering & automationMachiningCNC machine-tool0202 electrical engineering electronic engineering information engineeringSensitivity (control systems)General Environmental ScienceaccuracyIndustrial engineeringMachine tool3 axesNumerical controlGeneral Earth and Planetary Sciences020201 artificial intelligence & image processingbusinessmachiningProcedia Computer Science
researchProduct