Search results for "Cosmic Ray"

showing 10 items of 301 documents

The cosmic ray proton plus helium energy spectrum measured by the ARGO-YBJ experiment in the energy range 3-300 TeV

2015

The ARGO-YBJ experiment is a full-coverage air shower detector located at the Yangbajing Cosmic Ray Observatory (Tibet, People's Republic of China, 4300 m a.s.l.). The high altitude, combined with the full-coverage technique, allows the detection of extensive air showers in a wide energy range and offer the possibility of measuring the cosmic ray proton plus helium spectrum down to the TeV region, where direct balloon/space-borne measurements are available. The detector has been in stable data taking in its full configuration from November 2007 to February 2013. In this paper the measurement of the cosmic ray proton plus helium energy spectrum is presented in the region 3-300 TeV by analyzi…

Nuclear and High Energy PhysicsPARTICLE-ACCELERATIONPhysics and Astronomy (miscellaneous)ProtonAstrophysics::High Energy Astrophysical PhenomenaSHELLFOS: Physical sciencesCosmic rayAstrophysics01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Observatory0103 physical sciencesUltra-high-energy cosmic ray010306 general physicsCosmic-ray observatoryDETECTORNuclear and High Energy PhysicPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)AIR-SHOWERSSpectral index010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsSpectral densityAir shower13. Climate actionSUPERNOVA REMNANTHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Searches for atmospheric long-lived particles

2020

Long-lived particles are predicted in extensions of the Standard Model that involve relatively light but very weakly interacting sectors. In this paper we consider the possibility that some of these particles are produced in atmospheric cosmic ray showers, and their decay intercepted by neutrino detectors such as IceCube or Super-Kamiokande. We present the methodology and evaluate the sensitivity of these searches in various scenarios, including extensions with heavy neutral leptons in models of massive neutrinos, models with an extra $U(1)$ gauge symmetry, and a combination of both in a $U(1)_{B-L}$ model. Our results are shown as a function of the production rate and the lifetime of the c…

Nuclear and High Energy PhysicsParticle physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic ray01 natural sciences7. Clean energyHigh Energy Physics - ExperimentStandard ModelHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrino Physicslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsGauge symmetryPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFunction (mathematics)High Energy Physics - PhenomenologyNeutrino detectorBeyond Standard Modellcsh:QC770-798High Energy Physics::ExperimentSolar and Atmospheric NeutrinosNeutrinoProduction rateLeptonJournal of High Energy Physics
researchProduct

Parity-violating interactions of cosmic fields with atoms, molecules, and nuclei: Concepts and calculations for laboratory searches and extracting li…

2014

We propose methods and present calculations that can be used to search for evidence of cosmic fields by investigating the parity-violating effects, including parity nonconservation amplitudes and electric dipole moments, that they induce in atoms. The results are used to constrain important fundamental parameters describing the strength of the interaction of various cosmic fields with electrons, protons, and neutrons. Candidates for such fields are dark matter (including axions) and dark energy, as well as several more exotic sources described by standard-model extensions. Existing parity nonconservation experiments in Cs, Dy, Yb, and Tl are combined with our calculations to directly place …

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Nuclear TheoryAtomic Physics (physics.atom-ph)Dark matterFOS: Physical sciencesCosmic rayElectron01 natural sciencesPhysics - Atomic PhysicsNuclear physicsNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)Physics - Space Physics0103 physical sciencesNeutron010306 general physicsNuclear ExperimentPseudovectorPhysics010308 nuclear & particles physicsSpace Physics (physics.space-ph)PseudoscalarDipoleHigh Energy Physics - PhenomenologyNucleonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Calibration and Characterization of the IceCube Photomultiplier Tube

2010

Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resoluti…

Nuclear and High Energy PhysicsPhotomultiplier[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhotonPhysics::Instrumentation and Detectors[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayContext (language use)AstrophysicsAetiology screening and detection [ONCOL 5]01 natural sciencesIceCube Neutrino Observatory[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Optics0103 physical sciencesNeutrinoCherenkovddc:530Instrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsInstrumentationCosmic raysCherenkov radiationPhysicsCherenkov; Cosmic rays; Ice; Neutrino; PMT010308 nuclear & particles physicsbusiness.industry[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]IceAstrophysics::Instrumentation and Methods for AstrophysicsPMTNeutrinoPhotonicsAstrophysics - Instrumentation and Methods for Astrophysicsbusiness
researchProduct

In-flight performance of the DAMPE silicon tracker

2018

Abstract DAMPE (DArk Matter Particle Explorer) is a spaceborne high-energy cosmic ray and gamma-ray detector , successfully launched in December 2015. It is designed to probe astroparticle physics in the broad energy range from few GeV to 100 TeV. The scientific goals of DAMPE include the identification of possible signatures of Dark Matter annihilation or decay, the study of the origin and propagation mechanisms of cosmic-ray particles, and gamma-ray astronomy . DAMPE consists of four sub-detectors: a plastic scintillator strip detector, a Silicon–Tungsten tracKer–converter (STK), a BGO calorimeter and a neutron detector . The STK is composed of six double layers of single-sided silicon mi…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaGamma rayDark matterFOS: Physical sciencesCosmic rayScintillator01 natural sciences7. Clean energyOptics0103 physical sciencesDark matterNeutron detection010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysInstrumentationNuclear and High Energy PhysicAstroparticle physicsPhysicsCalorimeter (particle physics)010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleDetectorGamma raysGamma rayInstrumentation and Detectors (physics.ins-det)Cosmic raySpaceborne experimentSilicon trackerHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for AstrophysicsbusinessCosmic rays; Dark matter; Gamma rays; Silicon tracker; Spaceborne experiment; Nuclear and High Energy Physics; Instrumentation
researchProduct

The ATLAS level-1 trigger: Status of the system and first results from cosmic-ray data

2007

The ATLAS detector at CERN's Large Hadron Collider (LHC) will be exposed to proton-proton collisions from beams crossing at 40 MHz. At the design luminosity of 10^34 cm^-2 s^-1 there are on average 23 collisions per bunch crossing. A three-level trigger system will select potentially interesting events in order to reduce the read-out rate to about 200 Hz. The first trigger level is implemented in custom-built electronics and makes an initial fast selection based on detector data of coarse granularity. It has to reduce the rate by a factor of 10^4 to less than 100 kHz. The other two consecutive trigger levels are in software and run on PC farms. We present an overview of the first-level trig…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsAtlas detectoratlas; cosmic-ray data; installation and commissioning; trigger systemFOS: Physical sciencesCosmic rayinstallation and commissioningNuclear physicsSoftwareAtlas (anatomy)medicineatlascosmic-ray dataDetectors and Experimental TechniquesInstrumentationPhysicstrigger systemLarge Hadron ColliderLuminosity (scattering theory)business.industrySettore FIS/01 - Fisica SperimentaleDetectorInstrumentation and Detectors (physics.ins-det)medicine.anatomical_structurePhysics::Accelerator PhysicsGranularitybusinessNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

The MATHUSLA test stand

2020

The rate of muons from LHC $pp$ collisions reaching the surface above the ATLAS interaction point is measured and compared with expected rates from decays of $W$ and $Z$ bosons and $b$- and $c$-quark jets. In addition, data collected during periods without beams circulating in the LHC provide a measurement of the background from cosmic ray inelastic backscattering that is compared to simulation predictions. Data were recorded during 2018 in a 2.5 $\times$ 2.5 $\times$ 6.5~$\rm{m}^3$ active volume MATHUSLA test stand detector unit consisting of two scintillator planes, one at the top and one at the bottom, which defined the trigger, and six layers of RPCs between them, grouped into three $(x…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsBackscattered cosmic raysLong-lived particles; LHC; MATHUSLA; Backscattered cosmic raysFOS: Physical sciencesCosmic rayScintillator01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Atlas (anatomy)0103 physical sciencesmedicineDetectors and Experimental Techniques010306 general physicsphysics.ins-detInstrumentationSettore FIS/01PhysicsLuminosity (scattering theory)MuonLarge Hadron ColliderInteraction pointhep-ex010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Long-lived particlesMATHUSLAmedicine.anatomical_structureW′ and Z′ bosonsHigh Energy Physics::ExperimentLHCParticle Physics - ExperimentNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Construction of two large-size four-plane micromegas detectors

2015

We report on the construction and initial performance studies of two micromegas detector quadruplets with an area of 0.5 m$^2$. They serve as prototypes for the planned upgrade project of the ATLAS muon system. Their design is based on the resistive-strip technology and thus renders the detectors spark tolerant. Each quadruplet comprises four detection layers with 1024 readout strips and a strip pitch of 415 $\mu$m. In two out of the four layers the strips are inclined by $\pm$1.5$^{\circ}$ to allow for the measurement of a second coordinate. We present the detector concept and report on the experience gained during the detector construction. In addition an evaluation of the detector perfor…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsFOS: Physical sciencesCosmic raySTRIPS01 natural sciences030218 nuclear medicine & medical imaginglaw.inventionGaseous detector; Micromegas; Microstructure detector; Resistive couplingNuclear physics03 medical and health sciences0302 clinical medicineOpticsAtlas (anatomy)law0103 physical sciencesSpark (mathematics)medicineGaseous detectorDetectors and Experimental TechniquesInstrumentationMicrostructure detectorPhysicsResistive couplingMuon010308 nuclear & particles physicsbusiness.industryDetectorMicroMegas detectorInstrumentation and Detectors (physics.ins-det)Upgrademedicine.anatomical_structureHigh Energy Physics::ExperimentbusinessMicromegas
researchProduct

Temperature effect on RPC performance in the ARGO-YBJ experiment

2009

The ARGO-YBJ experiment has been taking data for nearly 2 years. In order to monitor continuously the performance of the Resistive Plate Chamber detectors and to study the daily temperature effects on the detector performance, a cosmic ray muon telescope was setup near the carpet detector array in the ARGO-YBJ laboratory. Based on the measurements performed using this telescope, it is found that, at the actual operating voltage of 7.2kV, the temperature effect on the RPC time resolution is about 0.04ns/degrees C and on the particle detection efficiency is about 0.03%/degrees C. Based on these figures we conclude that the environmental effects do not affect substantially the angular resoluti…

Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaCosmic rayEfficiencytelescopelaw.inventionTelescopeOpticslawAngular resolutionOperating voltagetime resolutionInstrumentationArgoPhysicsMuonbusiness.industryDetectorSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsTime resolutionTime resolutionCosmic Ray TelescopeefficiencyRPCHigh Energy Physics::Experimentbusiness
researchProduct

Observation of the cosmic-ray shadow of the Moon with IceCube

2013

We report on the observation of a significant deficit of cosmic rays from the direction of the Moon with the IceCube detector. The study of this "Moon shadow" is used to characterize the angular resolution and absolute pointing capabilities of the detector. The detection is based on data taken in two periods before the completion of the detector: between April 2008 and May 2009, when IceCube operated in a partial configuration with 40 detector strings deployed in the South Pole ice, and between May 2009 and May 2010 when the detector operated with 59 strings. Using two independent analysis methods, the Moon shadow has been observed to high significance (> 6 sigma) in both detector config…

Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics01 natural sciencesNEUTRINO TELESCOPESPosition (vector)SEARCH0103 physical sciencesShadowAngular resolutionddc:530ARRIVAL DIRECTIONS010303 astronomy & astrophysicsDETECTORAnalysis methodHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsANISOTROPY010308 nuclear & particles physicsDetectorSUNAstronomyANGULAR RESOLUTIONEarth's magnetic fieldDeflection (physics)Physics and AstronomyAstrophysics - High Energy Astrophysical Phenomena
researchProduct