Search results for "Cosmic Ray"
showing 10 items of 301 documents
Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters
2002
The Sudbury Neutrino Observatory (SNO) has measured day and night solar neutrino energy spectra and rates. For charged current events, assuming an undistorted $^8$B spectrum, the night minus day rate is $14.0% \pm 6.3% ^{+1.5}_{-1.4}%$ of the average rate. If the total flux of active neutrinos is additionally constrained to have no asymmetry, the $\nu_e$ asymmetry is found to be $7.0% \pm 4.9% ^{+1.3}_{-1.2}%$. A global solar neutrino analysis in terms of matter-enhanced oscillations of two active flavors strongly favors the Large Mixing Angle (LMA) solution.
Multiple accelerated particle populations in the Cygnus Loop with Fermi-LAT
2021
The Cygnus Loop (G74.0-8.5) is a very well-known nearby supernova remnant (SNR) in our Galaxy. Thanks to its large size, brightness, and angular offset from the Galactic plane, it has been studied in detail from radio to $\gamma$-ray emission. The $\gamma$ -rays probe the populations of energetic particles and their acceleration mechanisms at low shock speeds. We present an analysis of the $\gamma$-ray emission detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope over 11 years in the region of the Cygnus Loop. We performed detailed morphological and spectral studies of the $\gamma$-ray emission toward the remnant from 100 MeV to 100 GeV and compared it with X-ra…
Multi-point galactic cosmic ray measurements between 1 and 4.5 AU over a full solar cycle
2019
The radiation data collected by the Standard Radiation Environment Monitor (SREM) aboard ESA missions INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory), Rosetta, Herschel, Planck and Proba-1, and by the high-energy neutron detector (HEND) instrument aboard Mars Odyssey, are analysed with an emphasis on characterising galactic cosmic rays (GCRs) in the inner heliosphere. A cross calibration between all sensors was performed for this study, which can also be used in subsequent works. We investigate the stability of the SREM detectors over long-term periods. The radiation data are compared qualitatively and quantitatively with the corresponding solar activity. Based on INTEGRAL and Ro…
Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America
2014
The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyze aerosol optical depth $\tau_{\rm a}(z)$ values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of the Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean $\tau_{\rm a}(3.5~{\rm km})\sim 0.04$ - and shows a seasonal trend with a winter minimum - $\tau_{\rm a}(3.5~{\rm km})\sim 0.03$ -, and a sum…
Astrophysical neutrinos and cosmic rays observed by IceCube
2018
The core mission of the IceCube neutrino observatory is to study the origin and propagation of cosmic rays. IceCube, with its surface component IceTop, observes multiple signatures to accomplish this mission. Most important are the astrophysical neutrinos that are produced in interactions of cosmic rays, close to their sources and in interstellar space. IceCube is the first instrument that measures the properties of this astrophysical neutrino flux and constrains its origin. In addition, the spectrum, composition, and anisotropy of the local cosmic-ray flux are obtained from measurements of atmospheric muons and showers. Here we provide an overview of recent findings from the analysis of Ic…
Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova Remnants
2023
The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at energies around 3~PeV. Sources which are capable of accelerating hadrons to such energies are called hadronic PeVatrons. However, hadronic PeVatrons have not yet been firmly identified within the Galaxy. Several source classes, including Galactic Supernova Remnants (SNRs), have been proposed as PeVatron candidates. The potential to search for hadronic PeVatrons with the Cherenkov Telescope Array (CTA) is assessed. The focus is on the usage of very high energy $\gamma$-ray spectral signatures for the identification of PeVatrons. Assuming that SNRs can accelerate CRs up to knee energies, the number of Galactic SNRs whi…
Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory.
2012
The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna s…
Measurement of the radiation energy in the radio signal of extensive air showers as a universal estimator of cosmic-ray energy
2016
We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8±0.7(stat)±6.7(syst) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the d…
Searches for Large-Scale Anisotropy in the Arrival Directions of Cosmic Rays Detected above Energy of $10^{19}$ eV at the Pierre Auger Observatory an…
2014
Spherical harmonic moments are well-suited for capturing anisotropy at any scale in the flux of cosmic rays. An unambiguous measurement of the full set of spherical harmonic coefficients requires full-sky coverage. This can be achieved by combining data from observatories located in both the northern and southern hemispheres. To this end, a joint analysis using data recorded at the Telescope Array and the Pierre Auger Observatory above 1019 eV is presented in this work. The resulting multipolar expansion of the flux of cosmic rays allows us to perform a series of anisotropy searches, and in particular to report on the angular power spectrum of cosmic rays above 1019 eV. No significant devia…
Radio data and synchrotron emission in consistent cosmic ray models
2011
It is well established that phenomenological two-zone diffusion models of the galactic halo can very well reproduce cosmic-ray nuclear data and the observed antiproton flux. Here, we consider lepton propagation in such models and compute the expected galactic population of electrons, as well as the diffuse synchrotron emission that results from their interaction with galactic magnetic fields. We find models in agreement not only with cosmic ray data but also with radio surveys at essentially all frequencies. Requiring such a globally consistent description strongly disfavors very large ($L\gtrsim 15$ kpc) and, even stronger, small ($L\lesssim 1$ kpc) effective diffusive halo sizes. This has…