Search results for "Cosmology of Theories beyond the SM"

showing 10 items of 30 documents

Production of dark-matter bound states in the early universe by three-body recombination

2018

The small-scale structure problems of the universe can be solved by self-interacting dark matter that becomes strongly interacting at low energy. A particularly predictive model for the self-interactions is resonant short-range interactions with an S-wave scattering length that is much larger than the range. The velocity dependence of the cross section in such a model provides an excellent fit to self-interaction cross sections inferred from dark-matter halos of galaxies and clusters of galaxies if the dark-matter mass is about 19 GeV and the scattering length is about 17 fm. Such a model makes definite predictions for the few-body physics of weakly bound clusters of the dark-matter particl…

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Nuclear Theorymedia_common.quotation_subjectPhysics beyond the Standard ModelDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesHigh Energy Physics - ExperimentNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesBound stateEffective field theoryCluster (physics)lcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclear Experiment (nucl-ex)010306 general physicsNuclear Experimentmedia_commonPhysics010308 nuclear & particles physicsScattering lengthCosmology of Theories beyond the SMUniverseGalaxyHigh Energy Physics - PhenomenologyBeyond Standard Modellcsh:QC770-798Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

A systematic study of hidden sector dark matter: application to the gamma-ray and antiproton excesses

2020

In hidden sector models, dark matter does not directly couple to the particle content of the Standard Model, strongly suppressing rates at direct detection experiments, while still allowing for large signals from annihilation. In this paper, we conduct an extensive study of hidden sector dark matter, covering a wide range of dark matter spins, mediator spins, interaction diagrams, and annihilation final states, in each case determining whether the annihilations are s-wave (thus enabling efficient annihilation in the universe today). We then go on to consider a variety of portal interactions that allow the hidden sector annihilation products to decay into the Standard Model. We broadly class…

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesHigh Energy Physics - ExperimentStandard ModelHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Annihilation010308 nuclear & particles physicsCosmology of Theories beyond the SMGalaxyUniverseDwarf spheroidal galaxyHidden sectorHigh Energy Physics - PhenomenologyAntiprotonBeyond Standard Modellcsh:QC770-798Astrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Relaxing cosmological neutrino mass bounds with unstable neutrinos

2020

At present, cosmological observations set the most stringent bound on the neutrino mass scale. Within the standard cosmological model ($\Lambda$CDM), the Planck collaboration reports $\sum m_\nu < 0.12\,\text{eV}$ at 95% CL. This bound, taken at face value, excludes many neutrino mass models. However, unstable neutrinos, with lifetimes shorter than the age of the universe $\tau_\nu \lesssim t_U$, represent a particle physics avenue to relax this constraint. Motivated by this fact, we present a taxonomy of neutrino decay modes, categorizing them in terms of particle content and final decay products. Taking into account the relevant phenomenological bounds, our analysis shows that 2-body deca…

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Age of the universeFOS: Physical sciencesLambda-CDM model7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)symbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)Seesaw molecular geometry0103 physical sciencesNeutrino Physicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityPlanck010306 general physicsPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyMass generationElectroweak interactionCosmology of Theories beyond the SMHigh Energy Physics - PhenomenologyBeyond Standard ModelGoldstone bosonsymbolslcsh:QC770-798High Energy Physics::ExperimentNeutrinoAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of High Energy Physics
researchProduct

Shining Light on the Scotogenic Model: Interplay of Colliders and Cosmology

2019

In the framework of the scotogenic model, which features radiative generation of neutrino masses, we explore light dark matter scenario. Throughout the paper we chiefly focus on keV-scale dark matter which can be produced either via freeze-in through the decays of the new scalars, or from the decays of next-to-lightest fermionic particle in the spectrum, which is produced through freeze-out. The latter mechanism is required to be suppressed as it typically produces a hot dark matter component. Constraints from BBN are also considered and in combination with the former production mechanism they impose the dark matter to be light. For this scenario we consider signatures at High Luminosity LH…

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesCosmologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrino Physicslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsLight dark matterPhysicsLarge Hadron ColliderMissing energy010308 nuclear & particles physicsHot dark matterCosmology of Theories beyond the SMHigh Energy Physics - PhenomenologyBeyond Standard Modellcsh:QC770-798High Energy Physics::ExperimentNeutrinoLeptonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The Dispirited Case of Gauged $U(1)_{B-L}$ Dark Matter

2018

We explore the constraints and phenomenology of possibly the simplest scenario that could account at the same time for the active neutrino masses and the dark matter in the Universe within a gauged $U(1)_{B-L}$ symmetry, namely right-handed neutrino dark matter. We find that null searches from lepton and hadron colliders require dark matter with a mass below 900 GeV to annihilate through a resonance. Additionally, the very strong constraints from high-energy dilepton searches fully exclude the model for $ 150 \, \text{GeV} &lt; m_{Z'} &lt; 3 \, \text{TeV}$. We further explore the phenomenology in the high mass region (i.e. masses $\gtrsim \mathcal{O}(1) \, \text{TeV}$) and highlight theoret…

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics beyond the Standard ModelHadronDark matterFOS: Physical sciencesParameter space01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesLandau polelcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyCosmology of Theories beyond the SMHigh Energy Physics - PhenomenologyBeyond Standard Modellcsh:QC770-798High Energy Physics::ExperimentNeutrinoPhenomenology (particle physics)LeptonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Kaluza-Klein FIMP dark matter in warped extra-dimensions

2020

We study for the first time the case in which Dark Matter (DM) is made of Feebly Interacting Massive Particles (FIMP) interacting just gravitationally with the standard model particles in an extra-dimensional Randall-Sundrum scenario. We assume that both the dark matter and the standard model are localized in the IR-brane and only interact via gravitational mediators, namely the graviton, the Kaluza-Klein gravitons and the radion. We found that in the early Universe DM could be generated via two main processes: the direct freeze-in and the sequential freeze-in. The regions where the observed DM relic abundance is produced are largely compatible with cosmological and collider bounds.

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectKaluza–Klein theoryDark matterFOS: Physical sciences01 natural scienceslaw.inventionStandard ModelGravitationHigh Energy Physics - Phenomenology (hep-ph)law0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsCollidermedia_commonPhysics010308 nuclear & particles physicsGravitonCosmology of Theories beyond the SMUniverseHigh Energy Physics - PhenomenologyExtra dimensionsBeyond Standard Modellcsh:QC770-798Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

A tale of two portals: testing light, hidden new physics at future e + e − colliders

2017

We investigate the prospects for producing new, light, hidden states at a future $e^+ e^-$ collider in a Higgsed dark $U(1)_D$ model, which we call the Double Dark Portal model. The simultaneous presence of both vector and scalar portal couplings immediately modifies the Standard Model Higgsstrahlung channel, $e^+ e^- \to Zh$, at leading order in each coupling. In addition, each portal leads to complementary signals which can be probed at direct and indirect detection dark matter experiments. After accounting for current constraints from LEP and LHC, we demonstrate that a future $e^+ e^-$ Higgs factory will have unique and leading sensitivity to the two portal couplings by studying a host o…

Nuclear and High Energy PhysicsParticle physicsHiggs PhysicsPhysics beyond the Standard ModelDark matterScalar (mathematics)FOS: Physical sciences7. Clean energy01 natural sciencesHigh Energy Physics - Experimentlaw.inventionStandard ModelHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)law0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsColliderCouplingPhysicsLarge Hadron Collider010308 nuclear & particles physicsCosmology of Theories beyond the SMHigh Energy Physics - PhenomenologyBeyond Standard ModelHiggs bosonlcsh:QC770-798High Energy Physics::ExperimentJournal of High Energy Physics
researchProduct

Novel mechanism for primordial perturbations in minimal extensions of the Standard Model

2020

Abstract We demonstrate that light spectator fields in their equilibrium can source sizeable CMB anisotropies through modulated reheating even in the absence of direct couplings to the inflaton. The effect arises when the phase space of the inflaton decay is modulated by the spectator which generates masses for the decay products. We call the mechanism indirect modulation and using the stochastic eigenvalue expansion show that it can source perturbations even four orders of magnitude larger than the observed amplitude. Importantly, the indirect mechanism is present in the Standard Model extended with right- handed neutrinos. For a minimally coupled Higgs boson this leads to a novel lower bo…

Nuclear and High Energy PhysicsParticle physicsHiggs Physicshiukkasfysiikka114 Physical sciences01 natural sciencesUpper and lower boundsPhysics Particles & FieldsStandard Model0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicscosmology of theories beyond the SM0206 Quantum PhysicsPhysicsScience & Technology0105 Mathematical Physics010308 nuclear & particles physicsHiggsin bosoniPhysicshep-thHigh Energy Physics::PhenomenologyHiggs physicshep-phInflatonCosmology of Theories beyond the SMNuclear & Particles PhysicsAmplitudeOrders of magnitude (time)Phase spacePhysical Sciences0202 Atomic Molecular Nuclear Particle and Plasma Physicsastro-ph.COHiggs bosonlcsh:QC770-798NeutrinoJournal of High Energy Physics
researchProduct

On the validity of perturbative studies of the electroweak phase transition in the Two Higgs Doublet model

2019

Abstract Making use of a dimensionally-reduced effective theory at high temperature, we perform a nonperturbative study of the electroweak phase transition in the Two Higgs Doublet model. We focus on two phenomenologically allowed points in the parameter space, carrying out dynamical lattice simulations to determine the equilibrium properties of the transition. We discuss the shortcomings of conventional perturbative approaches based on the resummed effective potential — regarding the insufficient handling of infrared resummation but also the need to account for corrections beyond 1-loop order in the presence of large scalar couplings — and demonstrate that greater accuracy can be achieved …

Nuclear and High Energy PhysicsParticle physicsPhase transition530 PhysicsSTANDARD MODELFOS: Physical sciencesSECTORParameter space114 Physical sciences3D PHYSICS01 natural scienceslattice quantum field theoryCOSMOLOGY OF THEORIES BEYOND THE SMTwo-Higgs-doublet modelHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)BARYON ASYMMETRY0103 physical sciencesEffective field theoryeffective field theorieslcsh:Nuclear and particle physics. Atomic energy. RadioactivityResummation010306 general physicscosmology of theories beyond the SMLATTICE QUANTUM FIELD THEORYPhysicsPP COLLISIONS010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyElectroweak interactionBOSONTHERMAL FIELD THEORYBARYOGENESISthermal field theoryLATTICEHigh Energy Physics - PhenomenologyCP-VIOLATIONTEMPERATURE DIMENSIONAL REDUCTIONlcsh:QC770-798EFFECTIVE FIELD THEORIES
researchProduct

Quintessence, inflation and baryogenesis from a single pseudo-Nambu-Goldstone boson

2007

15 pages, 3 figures.-- ISI Article Identifier: 000250759700079.-- ArXiv pre-print available at: http://arxiv.org/abs/0707.3999

Nuclear and High Energy PhysicsParticle physicsProton decayCosmic microwave backgroundGenerationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicssymbols.namesakePlanckBosonPhysicsHigh Energy Physics::PhenomenologyAstrophysics (astro-ph)BaryogenesisFísicaCosmology of Theories beyond the SMWater Cherenkov DetectorBaryogenesisGoldstone bosonLeptogenesissymbolsDark energyHigh Energy Physics::ExperimentQuintessence
researchProduct