Search results for "Cripto"

showing 10 items of 863 documents

Bacterial antisense RNAs are mainly the product of transcriptional noise

2015

Most of the antisense transcripts in bacteria are the product of transcriptional noise derived from spurious promoters.

0301 basic medicineTranscription GeneticBacterial antisense RNAs030106 microbiologyinformation scienceBiologyGenomeTranscriptome03 medical and health sciencesSpecies SpecificityTranscription (biology)medicineLife Sciencenatural sciencesRNA AntisenseSystems and Synthetic BiologyResearch ArticlesGeneticsBiomoleculesMessenger RNASysteem en Synthetische BiologieMultidisciplinaryRNASciAdv r-articlesPromotersocial sciencesmedicine.diseaseequipment and supplieshealth care quality access and evaluationChloroplastRNA BacterialCardiovascular and Metabolic Diseasesbacterial antisense RNAsRNATranscriptomeTranscriptional noiseResearch ArticleScience Advances
researchProduct

CENTENARIANS TRANSCRIPTOME IS UNIQUE AND REVEALS A ROLE OF BCL-XL IN SUCCESSFUL AGING

2017

Centenarians not only enjoy an extraordinary aging, but also show a compression of morbidity. We identified 1721 mRNAs differentially expressed by PMBCs from centenarians when compared with septuagenarians and young people. Sub-network analysis led us to identify Bcl-xL as an important gene up-regulated in centenarians. We found that centenarians display lower plasma cytochrome C levels, higher mitochondrial membrane potential and also less cellular damage accumulation. Immune function is significantly impaired in septuagenarians compared with young people whereas centenarians maintain it. To further ascertain the functional role of Bcl-xL in cellular aging, we found in transduced lymphocyt…

0301 basic medicineTranscriptomeAbstracts03 medical and health sciences030104 developmental biologyHealth (social science)Successful agingbiology.proteinBcl-xLComputational biologyBiologyLife-span and Life-course StudiesHealth Professions (miscellaneous)Innovation in Aging
researchProduct

Functional Genomics in Wine Yeast: DNA Arrays and Next Generation Sequencing

2017

Since their very beginning, DNA array and next-generation sequencing technologies have been used with Saccharomyces cerevisiae cells. In the last 7 years, an increasing number of studies have focused on the study of wine strains and winemaking. The uncovering of the genomic features of these strains and expression profiles under the different stressful conditions that they have to deal with have contributed significantly to the knowledge of how this amazing microorganism can convert grape must into a drink that has enormously influenced mankind for 7000 years.This review presents a synopsis of DNA array and next-generation sequencing (NGS) technologies and focus mainly in their use in study…

0301 basic medicineWineGeneticsbiology030106 microbiologySaccharomyces cerevisiaeComputational biologybiology.organism_classificationDNA sequencingTranscriptome03 medical and health sciencesYeast in winemaking030104 developmental biologyDNA microarrayFunctional genomicsWinemaking
researchProduct

Microbiome-assisted carrion preservation aids larval development in a burying beetle

2018

Significance Ephemeral diets such as carrion are high-quality resources that are susceptible to microbial spoilage. Carrion-feeding insects that breed on decaying carcasses must overcome challenges arising from competing microbes. Here we report that a carrion-feeding burying beetle preserves carcasses by regulating its microbial growth, resulting in changes in its biochemical properties including the reduction of toxic polyamines associated with putrefaction and nutrient loss. The beetle’s microbial symbionts form a biofilm-like matrix on carcasses, which is important for optimal larval development. The beetles and their microbiome thus coordinate a specialized adaptive strategy of carrion…

0301 basic medicineZoologyDecomposer03 medical and health scienceschemistry.chemical_compoundCadaverinePutrescineinsect nutritionAnimalsCarrionMicrobiomeresource competitionLarvaCadaverineMultidisciplinaryEcologygut microbiotaBacteriabiologyMicrobiotafungusfungiFungifood and beveragesBiological Sciencesbiology.organism_classificationNicrophorus vespilloidessymbiosisColeoptera030104 developmental biologyMicrobial population biologychemistryBiofilmsLarvaBurying beetleTranscriptome
researchProduct

Viable But Not Culturable (VBNC) state of Brettanomyces bruxellensis in wine: New insights on molecular basis of VBNC behaviour using a transcriptomi…

2016

International audience; The spoilage potential of Brettanomyces bruxellensis in wine is strongly connected with the aptitude of this yeast to enter in a Viable But Non Culturable (VBNC) state when exposed to the harsh wine conditions. In this work, we characterized the VBNC behaviour of seven strains of B. bruxellensis representing a regional intraspecific biodiversity, reporting conclusive evidence for the assessment of VBNC as a strain-dependent character. The VBNC behaviour was monitored by fluorescein diacetate staining/flow cytometry for eleven days after addition of 0.4, 0.6, 0.8, 1 and 1.2 mg/L of molecular SO2 (entrance in the VBNC state) and after SO2 removal (exit from the VBNC st…

0301 basic medicine[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionColony Count MicrobialExpressionSaccharomyces-cerevisiaeTranscriptometranscriptomicsHomeostasisSulfur DioxideHeat-Shock Proteinsmedicine.diagnostic_testViabilityCarbohydrate MetabolismOxidation-ReductionVolatile phenol production030106 microbiologyBrettanomyces bruxellensisBrettanomycesBiologyFlow cytometryMicrobiology03 medical and health sciencesPhenolsHeat shock proteinsulphitemedicineSulfiteswineGeneRna-seqBrettanomyces; spoilage; sulphite; transcriptomics; Viable But Not Culturable (VBNC); wine; food science; microbiologyWineMicrobial ViabilityGene Expression ProfilingspoilagemicrobiologyDNA replicationNonculturable bacteriabiology.organism_classificationCampylobacter-jejuniSulfur-dioxideYeastYeastCulture MediaOxidative StressFood MicrobiologyViable But Not Culturable (VBNC)food science[SDV.AEN]Life Sciences [q-bio]/Food and NutritionSettore AGR/16 - Microbiologia Agraria
researchProduct

The ‘Shellome’ of the Crocus Clam Tridacna crocea Emphasizes Essential Components of Mollusk Shell Biomineralization

2021

Molluscan shells are among the most fascinating research objects because of their diverse morphologies and textures. The formation of these delicate biomineralized structures is a matrix-mediated process. A question that arises is what are the essential components required to build these exoskeletons. In order to understand the molecular mechanisms of molluscan shell formation, it is crucial to identify organic macromolecules in different shells from diverse taxa. In the case of bivalves, however, taxon sampling in previous shell proteomics studies are focused predominantly on representatives of the class Pteriomorphia such as pearl oysters, edible oysters and mussels. In this study, we hav…

0301 basic medicine[CHIM.POLY] Chemical Sciences/Polymers[SPI.GPROC] Engineering Sciences [physics]/Chemical and Process EngineeringproteomeTridacna croceaJAPANESE PEARL OYSTERQH426-470[SPI.MAT] Engineering Sciences [physics]/Materials[SPI.MAT]Engineering Sciences [physics]/Materials03 medical and health sciences[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]Genetics[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering14. Life underwaterMolluscaGenetics (clinical)Original Research030102 biochemistry & molecular biologybiology[CHIM.ORGA]Chemical Sciences/Organic chemistryfungibiology.organism_classificationBivalviabiomineralization[CHIM.ORGA] Chemical Sciences/Organic chemistryTridacnaPteriomorphiaMytilusBivalvia030104 developmental biology[CHIM.POLY]Chemical Sciences/PolymersEvolutionary biologyMolluscaProteomeMolecular Medicineshell formationHeterodontatranscriptomeBiomineralization
researchProduct

Systematic gene overexpression in Candida albicans identifies a regulator of early adaptation to the mammalian gut.

2018

International audience; Candida albicans is part of the human gastrointestinal (GI) microbiota. To better understand how C. albicans efficiently establishes GI colonisation, we competitively challenged growth of 572 signature-tagged strains (~10% genome coverage), each conditionally overexpressing a single gene, in the murine gut. We identified CRZ2, a transcription factor whose overexpression and deletion respectively increased and decreased early GI colonisation. Using clues from genome-wide expression and gene-set enrichment analyses, we found that the optimal activity of Crz2p occurs under hypoxia at 37°C, as evidenced by both phenotypic and transcriptomic analyses following CRZ2 geneti…

0301 basic medicine[SDV.MHEP.AHA] Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]030106 microbiologyImmunologyMicrobiologyMannosyltransferasesBiological pathwayTranscriptomeFungal ProteinsMannans03 medical and health scienceschemistry.chemical_compoundtranscriptomicsregulatory networksCell WallVirologyGene Expression Regulation FungalCandida albicanssignature‐tagged overexpression[SDV.MHEP.AHA]Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]AnimalsGene Regulatory NetworksCandida albicansPromoter Regions GeneticGeneTranscription factorResearch ArticlesFungal proteinMice Inbred BALB CCRZ2chromatin immunoprecipitation‐on‐chipbiologyCRZ2;Candida albicans;chromatin immunoprecipitation-on-chip;gastrointestinal colonisation;regulatory networks;signature-tagged overexpression;transcriptomicsTunicamycinTunicamycinHydrogen-Ion Concentrationbiology.organism_classificationPhenotypeCell biologyGastrointestinal MicrobiomeGastrointestinal Tractchemistrychromatin immunoprecipitation-on-chipFemalesignature-tagged overexpressionMicroorganisms Genetically-Modifiedgastrointestinal colonisationResearch Article
researchProduct

Transcriptome analysis revealed that a quorum sensing system regulates the transfer of the pAt megaplasmid in Agrobacterium tumefaciens.

2016

Background Agrobacterium tumefaciens strain P4 is atypical, as the strain is not pathogenic and produces a for this species unusual quorum sensing signal, identified as N-(3-hydroxy-octanoyl)-homoserine lactone (3OH,C8-HSL). Results By sequence analysis and cloning, a functional luxI-like gene, named cinI, has been identified on the At plasmid of A. tumefaciens strain P4. Insertion mutagenesis in the cinI gene and transcriptome analyses permitted the identification of 32 cinI-regulated genes in this strain, most of them encoding proteins responsible for the conjugative transfer of pAtP4. Among these genes were the avhB genes that encode a type 4 secretion system (T4SS) involved in the forma…

0301 basic medicineacylhomoserime lactoneIdentification[SDV]Life Sciences [q-bio]AgrobacteriumPlasmidePlant Rootsfluids and secretionsPlasmidSolanum lycopersicumhttp://aims.fao.org/aos/agrovoc/c_16014Expression des gènesDynamique des populationsCloning MolecularPhylogenyGeneticsbiology000 - Autres thèmeshttp://aims.fao.org/aos/agrovoc/c_27583food and beveragesAgrobacterium tumefaciensLactonehttp://aims.fao.org/aos/agrovoc/c_768[SDV] Life Sciences [q-bio]Quorum sensingT4SSConjugation GeneticPropriété biologiquehttp://aims.fao.org/aos/agrovoc/c_35128PlasmidsResearch Articlehttp://aims.fao.org/aos/agrovoc/c_4145BiotechnologyDtr systemSéquence nucléotidiqueAgrobacteriumSequence analysisMutagenesis (molecular biology technique)At plasmid03 medical and health scienceshttp://aims.fao.org/aos/agrovoc/c_4891Bacterial Proteinsstomatognathic systemhttp://aims.fao.org/aos/agrovoc/c_3081Geneticshttp://aims.fao.org/aos/agrovoc/c_1501Acylhomoserine lactoneTranscriptomicsGenehttp://aims.fao.org/aos/agrovoc/c_6111H20 - Maladies des plantesCloning[ SDV ] Life Sciences [q-bio]Bactériologiehttp://aims.fao.org/aos/agrovoc/c_27444Sequence Analysis RNATranscription géniqueConjugationGene Expression ProfilingBiologie moléculaireGene Expression Regulation Bacterialbiochemical phenomena metabolism and nutritionQuorum sensing;Agrobacterïum;At plasmid;transcriptomics;conjugation;T4SS;Dtr system;Acylhomoserine lactonebiology.organism_classificationhttp://aims.fao.org/aos/agrovoc/c_27527Quorum sensinghttp://aims.fao.org/aos/agrovoc/c_3791030104 developmental biologyAgrobacterium tumefaciensbacteriaGenetic Fitness
researchProduct

Holistic Optimization of Bioinformatic Analysis Pipeline for Detection and Quantification of 2′-O-Methylations in RNA by RiboMethSeq

2020

International audience; A major trend in the epitranscriptomics field over the last 5 years has been the high-throughput analysis of RNA modifications by a combination of specific chemical treatment(s), followed by library preparation and deep sequencing. Multiple protocols have been described for several important RNA modifications, such as 5-methylcytosine (m5C), pseudouridine (ψ), 1-methyladenosine (m1A), and 2'-O-methylation (Nm). One commonly used method is the alkaline cleavage-based RiboMethSeq protocol, where positions of reads' 5'-ends are used to distinguish nucleotides protected by ribose methylation. This method was successfully applied to detect and quantify Nm residues in vari…

0301 basic medicinebioinformatic pipelinelcsh:QH426-470Computer scienceComputational biologyDeep sequencingPseudouridine03 medical and health scienceschemistry.chemical_compound0302 clinical medicine[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]ribose methylationEpitranscriptomicsGeneticsGenetics (clinical)receiver operating characteristic2'-O-methylation2′-O-methylationhigh-throughput sequencingRNA[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyBrief Research Reportlcsh:Genetics030104 developmental biologychemistry030220 oncology & carcinogenesisTransfer RNARNAMolecular MedicineSmall nuclear RNAReference genomeFrontiers in Genetics
researchProduct

The developmental proteome of Drosophila melanogaster

2017

Drosophila melanogaster is a widely used genetic model organism in developmental biology. While this model organism has been intensively studied at the RNA level, a comprehensive proteomic study covering the complete life cycle is still missing. Here, we apply label-free quantitative proteomics to explore proteome remodeling across Drosophila’s life cycle, resulting in 7952 proteins, and provide a high temporal-resolved embryogenesis proteome of 5458 proteins. Our proteome data enabled us to monitor isoform-specific expression of 34 genes during development, to identify the pseudogene Cyp9f3Ψ as a protein-coding gene, and to obtain evidence of 268 small proteins. Moreover, the comparison wi…

0301 basic medicinebiologyved/biologyved/biology.organism_classification_rank.speciesQuantitative proteomicsComputational biologyProteomicsbiology.organism_classificationTranscriptome03 medical and health sciences030104 developmental biologyGenetic modelProteomeGeneticsDrosophila melanogasterModel organismGenetics (clinical)Drosophila ProteinGenome Research
researchProduct