Search results for "Crystallin"
showing 10 items of 827 documents
A comprehensive study of structure and properties of nanocrystalline zinc peroxide
2022
Abstract Nanocrystalline zinc peroxide (nano-ZnO2) was synthesized through a hydrothermal process and comprehensively studied using several experimental techniques. Its crystal structure was characterized by X-ray diffraction, and the average crystallite size of 22 nm was estimated by Rietveld refinement. The temperature-dependent local environment around zinc atoms was reconstructed using reverse Monte Carlo (RMC) analysis from the Zn K-edge X-ray absorption spectra. The indirect band gap of about 4.6 eV was found using optical absorption spectroscopy. Lattice dynamics of nano-ZnO2 was studied by infrared and Raman spectroscopy. In situ Raman measurements indicate the stability of nano-ZnO…
The effect of macromolecular architecture of ethylene copolymers with multi-alkenylsilsesquioxane on morphological, rheological and dynamic mechanica…
2021
Abstract The influence of the degree and the way of incorporation of multi-alkenylsilsesquioxane into the polymer chain on morphological, rheological and dynamic mechanical parameters were determined. It was found that POSS incorporated into the polymer chain was located outside the crystalline structure of lamella in amorphous phase. The incorporation of POSS-6-2 as a pendant group resulted in significant increase of separation of macromolecules. The key factor in rheological and dynamic mechanical behavior of copolymers turned out to be the way of POSS incorporation into the polymer chain. The incorporation of POSS into the polymer chain as a pendant group resulted in decreased relaxation…
Thermal Analysis, Mechanical and Rheological Behaviour of Melt Manufactured Polyethylene/Liquid Crystal Polymer Blends
2011
Modification of properties of conventional thermoplastics with thermotropic liquid crystal polymers, from one hand, allows decrease their viscosities, substantially facilitating processing conditions, and, from another hand, allows increase their exploitation properties. Orientation of the labile structure of liquid crystal polymer in extrusion or injection moulding causes specific reinforcement (so-called self-reinforcement) to occur in the blends containing liquid crystal polymer. Up to now the effect of self-reinforcement is mostly investigated in the blends, containing considerable amount of liquid crystal polymer. In this research the effect of minor amounts of liquid crystalline co-po…
Protective Effects of L- and D-Carnosine on R-Crystallin Amyloid Fibril Formation: Implications for Cataract Disease
2009
Mildly denaturing conditions induce bovine ?-crystallin, the major structural lens protein, to self-assemble into fibrillar structures in vitro. The natural dipeptide L-carnosine has been shown to have potential protective and therapeutic significance in many diseases. Carnosine derivatives have been proposed as potent agents for ophthalmic therapies of senile cataracts and diabetic ocular complications. Here we report the inhibitory effect induced by the peptide (L- and D-enantiomeric form) on ?-crystallin fibrillation and the almost complete restoration of the chaperone activity lost after denaturant and/or heat stress. Scanning force microscopy (SFM), thioflavin T, and a turbidimetry ass…
3D modeling of doping from the atmosphere in floating zone silicon crystal growth
2017
Abstract Three-dimensional numerical simulations of the inert gas flow, melt flow and dopant transport in both phases are carried out for silicon single crystal growth using the floating zone method. The mathematical model allows to predict the cooling heat flux density at silicon surfaces and realistically describes the dopant transport in case of doping from the atmosphere. A very good agreement with experiment is obtained for the radial resistivity variation profiles by taking into account the temperature dependence of chemical reaction processes at the free surface.
Performance of polyester-based electrospun scaffolds under in vitro hydrolytic conditions: From short-term to long-term applications
2019
The evaluation of the performance of polyesters under in vitro physiologic conditions is essential to design scaffolds with an adequate lifespan for a given application. In this line, the degradation-durability patterns of poly(lactide-co-glycolide) (PLGA), polydioxanone (PDO), polycaprolactone (PCL) and polyhydroxybutyrate (PHB) scaffolds were monitored and compared giving, as a result, a basis for the specific design of scaffolds from short-term to long-term applications. For this purpose, they were immersed in ultra-pure water and phosphate buffer solution (PBS) at 37 °
Iris-fixated toric phakic intraocular lens: Three-year follow-up
2006
Purpose To evaluate the 3-year safety, efficacy, predictability, and stability of iris-fixated toric phakic intraocular lens (pIOL) implantation for the correction of myopia or hyperopia with astigmatism. Setting Department of Ophthalmology, Johannes Gutenberg University, Mainz, and Department of Ophthalmology, University Clinic, Bochum, Germany. Methods A prospective clinical trial of 40 eyes of 23 patients with high ametropia and astigmatism was conducted. Best spectacle-corrected visual acuity (BSCVA), uncorrected visual acuity, refraction, astigmatism, intraocular pressure, slitlamp biomicroscopy, and indirect ophthalmoscopy were measured preoperatively and postoperatively. Results Of t…
Protocol for development of various plants leaves extract in single-pot synthesis of metal nanoparticles
2012
This article is aimed to extend a simple protocol for preparation of various plant leaves extract and their application to green synthesis of the metallic nanoparticles. Five plant leaves extract showed mild reduction and stabilization ability for silver and gold nanoparticles (AgNPs and AuNPs) at room temperature. The particle size range varied from 25 to 42 nm and 21 to 47 nm for AgNPs and AuNPs, respectively. Plant leaves extract-mediated nanoparticles were characterized to confirm the shape, size, crystallinity, and content using different spectroscopic investigations. Differences in stability of nanoparticles at different pH were also measured by zeta potential.
Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice
2017
On the surface of water ice, a quasi-liquid layer (QLL) has been extensively reported at temperatures below its bulk melting point at 273 K. Approaching the bulk melting temperature from below, the thickness of the QLL is known to increase. To elucidate the precise temperature variation of the QLL, and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surface-specific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice faces at different temperatures. For the basal face, a stepwise, sudden weakening of the hy…
Chemical heterogeneities in nanometric titanomagnetites prepared by soft chemistry and studied ex situ : evidence for fe-segregation and oxidation ki…
2001
Nanocrystalline Fe-based spinels with composition Fe3-xTixO4 are synthesized using soft chemistry. Two steps are involved: precipitation in an aqueous solution followed by thermal annealing under a reducing mixture of N2/H2/H2O gases. Fe-segregation is found inside stoichiometric particles when the powders are studied ex situ; they exhibit a strong surface iron enrichment. This heterogeneity is related to kinetic effects linked to the difference of mobility between Fe2+ and Ti4+ cations during the partial oxidation of cations occurring ex situ. Stresses in the grains induced by oxidation govern the oxidation kinetics and lead to an abrupt compositional variation inside each particle. These…