6533b7cefe1ef96bd1257a05

RESEARCH PRODUCT

Performance of polyester-based electrospun scaffolds under in vitro hydrolytic conditions: From short-term to long-term applications

Jordi J. BouJosé David BadiaOscar Gil-castellAmparo Ribes-greus

subject

BiopolimersMaterials scienceBiopolymerGeneral Chemical EngineeringPolyestersPHBPolyestermacromolecular substancesMembranes (Biology)engineering.materialArticlelcsh:ChemistryPolyhydroxybutyratePolydioxanonechemistry.chemical_compoundCrystallinity:Enginyeria química [Àrees temàtiques de la UPC]BiopolymersMembranes (Biologia)biopolymerPolièstersPDOGeneral Materials SciencepolyesterTissue engineeringScaffoldsMolar massNanotecnologiaTermoplàsticstechnology industry and agriculturePLGAPolyesterPLGAIn vitro hydrolytic degradationlcsh:QD1-999chemistryChemical engineeringEnginyeria de teixitsPCLscaffoldstissue engineeringPolycaprolactoneengineeringin vitro hydrolytic degradationBiopolymer

description

The evaluation of the performance of polyesters under in vitro physiologic conditions is essential to design scaffolds with an adequate lifespan for a given application. In this line, the degradation-durability patterns of poly(lactide-co-glycolide) (PLGA), polydioxanone (PDO), polycaprolactone (PCL) and polyhydroxybutyrate (PHB) scaffolds were monitored and compared giving, as a result, a basis for the specific design of scaffolds from short-term to long-term applications. For this purpose, they were immersed in ultra-pure water and phosphate buffer solution (PBS) at 37 &deg

10.3390/nano9050786https://hdl.handle.net/2117/170164