Search results for "Cystic fibrosis transmembrane conductance regulator"
showing 4 items of 24 documents
Evaluation of Fused Pyrrolothiazole Systems as Correctors of Mutant CFTR Protein.
2021
Cystic fibrosis (CF) is a genetic disease caused by mutations that impair the function of the CFTR chloride channel. The most frequent mutation, F508del, causes misfolding and premature degradation of CFTR protein. This defect can be overcome with pharmacological agents named “correctors”. So far, at least three different classes of correctors have been identified based on the additive/synergistic effects that are obtained when compounds of different classes are combined together. The development of class 2 correctors has lagged behind that of compounds belonging to the other classes. It was shown that the efficacy of the prototypical class 2 corrector, the bithiazole corr-4a, could be impr…
Efficient, non-toxic anion transport by synthetic carriers in cells and epithelia.
2016
Transmembrane anion transporters (anionophores) have potential for new modes of biological activity, including therapeutic applications. In particular they might replace the activity of defective anion channels in conditions such as cystic fibrosis. However, data on the biological effects of anionophores are scarce, and it remains uncertain whether such molecules are fundamentally toxic. Here, we report a biological study of an extensive series of powerful anion carriers. Fifteen anionophores were assayed in single cells by monitoring anion transport in real time through fluorescence emission from halide-sensitive yellow fluorescent protein. A bis-(p-nitrophenyl)ureidodecalin shows especial…
The selective advantage of cystic fibrosis heterozygotes tested by aDNA analysis: A preliminary investigation
2000
Recently a heterozygote advantage was suggested to explain the high incidence (1:25 carrier individuals in Europeans) of the cystic fibrosis gene. This selective advantage was speculated to be due to a high resistance to chloride-secreting diarrhea, including cholera. Up to now the major efforts to test directly this hypothesis have been limited to animal models.
Current development of CFTR potentiators in the last decade
2020
Cystic fibrosis (CF) is a genetic disorder produced by the loss of function of CFTR, a main chloride channel involved in transepithelial salt and water transport. CFTR function can be rescued by small molecules called "potentiators" which increase gating activity of CFTR on epithelial surfaces. High throughput screening (HTS) assays allowed the identification of new chemical entities endowed with potentiator properties, further improved through medicinal chemistry optimization. In this review, the most relevant classes of CFTR potentiators developed in the last decade were explored, focusing on structure-activity relationships (SAR) of the different chemical entities, as a useful tool for t…