Search results for "DATA"

showing 10 items of 12992 documents

Recent Advances in Techniques for Hyperspectral Image Processing

2009

International audience; Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than thirty years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspec- tral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the high-dimensional nature of the data, and to integrate the spa- tial and spectral information. Performance of the discussed techniques is evaluated in …

010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesSoil ScienceImage processing02 engineering and technologyMachine learningcomputer.software_genre01 natural sciences[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingComputer visionComputers in Earth Sciences021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingData processingContextual image classificationbusiness.industryHyperspectral imagingGeologyImaging spectroscopyInformation extractionKernel methodSnapshot (computer storage)Artificial intelligencebusinesscomputer[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Edge-Based Missing Data Imputation in Large-Scale Environments

2021

Smart cities leverage large amounts of data acquired in the urban environment in the context of decision support tools. These tools enable monitoring the environment to improve the quality of services offered to citizens. The increasing diffusion of personal Internet of things devices capable of sensing the physical environment allows for low-cost solutions to acquire a large amount of information within the urban environment. On the one hand, the use of mobile and intermittent sensors implies new scenarios of large-scale data analysis

010504 meteorology & atmospheric sciencesComputer scienceDistributed computingUrban sensingMobile sensingContext (language use)Information technology02 engineering and technology01 natural sciences[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Smart cityEdge intelligence11. Sustainability0202 electrical engineering electronic engineering information engineeringLeverage (statistics)Edge computingVoronoi tessellation0105 earth and related environmental sciencesSmart cityOut-of-order executionSettore INF/01 - InformaticaMulti-agent systemMissing data imputation020206 networking & telecommunicationsT58.5-58.64Variety (cybernetics)Multi-agent system[INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA]Mobile deviceInformation Systems
researchProduct

Cloud detection on the Google Earth engine platform

2017

The vast amount of data acquired by current high resolution Earth observation satellites implies some technical challenges to be faced. Google Earth Engine (GEE) platform provides a framework for the development of algorithms and products built over this data in an easy and scalable manner. In this paper, we take advantage of the GEE platform capabilities to exploit the wealth of information in the temporal dimension by processing a long time series of satellite images. A cloud detection algorithm for Landsat-8, which uses previous images of the same location to detect clouds, is implemented and tested on the GEE platform.

010504 meteorology & atmospheric sciencesComputer scienceReal-time computingScalability0211 other engineering and technologiesCloud detectionSatellite02 engineering and technologyDimension (data warehouse)Earth observation satellite01 natural sciences021101 geological & geomatics engineering0105 earth and related environmental sciences2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
researchProduct

Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples

2016

Abstract. Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squar…

010504 meteorology & atmospheric sciencesComputer scienceStratigraphySoil ScienceImage processing010502 geochemistry & geophysicsResidual01 natural sciences550 Earth scienceslcsh:StratigraphyGeochemistry and PetrologyLeast squares support vector machineSegmentationlcsh:QE640-6990105 earth and related environmental sciencesEarth-Surface ProcessesPixelbusiness.industrylcsh:QE1-996.5PaleontologyGeologyPattern recognition550 Geowissenschaftenlcsh:GeologyData setSupport vector machineGeophysicsData pointArtificial intelligencebusinessSolid Earth
researchProduct

Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging

2017

Made available in DSpace on 2018-12-11T17:11:58Z (GMT). No. of bitstreams: 0 Previous issue date: 2017-03-01 Suomen Akatemia Small unmanned aerial vehicle (UAV) based remote sensing is a rapidly evolving technology. Novel sensors and methods are entering the market, offering completely new possibilities to carry out remote sensing tasks. Three-dimensional (3D) hyperspectral remote sensing is a novel and powerful technology that has recently become available to small UAVs. This study investigated the performance of UAV-based photogrammetry and hyperspectral imaging in individual tree detection and tree species classification in boreal forests. Eleven test sites with 4151 reference trees repr…

010504 meteorology & atmospheric sciencesComputer scienceUAV0211 other engineering and technologiesPoint cloudta117102 engineering and technologyradiometryphotogrammetry01 natural sciencesforestComputer visionForestRadiometrylcsh:Science021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingfotogrammetriata113UAV; hyperspectral; photogrammetry; radiometry; point cloud; forest; classificationluokitus (toiminta)ta114business.industryHyperspectral imaging15. Life on landOtaNanoClassificationRandom forestPoint cloudTree (data structure)PhotogrammetryhyperspectralHyperspectralclassification13. Climate actionMultilayer perceptronPhotogrammetryGeneral Earth and Planetary SciencesRadiometryRGB color modellcsh:QArtificial intelligencebusinesspoint cloudRemote Sensing; Volume 9; Issue 3; Pages: 185
researchProduct

Convolutional Neural Networks for Cloud Screening: Transfer Learning from Landsat-8 to Proba-V

2018

Cloud detection is a key issue for exploiting the information from Earth observation satellites multispectral sensors. For Proba-V, cloud detection is challenging due to the limited number of spectral bands. Advanced machine learning methods, such as convolutional neural networks (CNN), have shown to work well on this problem provided enough labeled data. However, simultaneous collocated information about the presence of clouds is usually not available or requires a great amount of manual labor. In this work, we propose to learn from the available Landsat −8 cloud masks datasets and transfer this learning to solve the Proba-V cloud detection problem. CNN are trained with Landsat images adap…

010504 meteorology & atmospheric sciencesComputer sciencebusiness.industryMultispectral image0211 other engineering and technologiesPattern recognitionCloud computing02 engineering and technologySpectral bands01 natural sciencesConvolutional neural networkData modelingKey (cryptography)Artificial intelligencebusinessTransfer of learning021101 geological & geomatics engineering0105 earth and related environmental sciencesIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks

2020

Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were emp…

010504 meteorology & atmospheric sciencesComputer sciencehyperspectral image classificationScience0211 other engineering and technologiesgeoinformatics02 engineering and technologyneuroverkot01 natural sciencesConvolutional neural networkpuulajitPARAMETERSSet (abstract data type)LIDARFORESTSClassifier (linguistics)021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryDeep learningspektrikuvausQHyperspectral imagingdeep learningPattern recognition15. Life on landmiehittämättömät ilma-aluksetPerceptron113 Computer and information sciencesClass (biology)drone imagery3d convolutional neural networksmetsänarviointiMACHINEkoneoppiminentree species classification3D convolutional neural networksGeneral Earth and Planetary SciencesRGB color modelArtificial intelligencekaukokartoitusbusinesshyperspectral image classificationRemote Sensing
researchProduct

Efficient remote sensing image classification with Gaussian processes and Fourier features

2017

This paper presents an efficient methodology for approximating kernel functions in Gaussian process classification (GPC). Two models are introduced. We first include the standard random Fourier features (RFF) approximation into GPC, which largely improves the computational efficiency and permits large scale remote sensing data classification. In addition, we develop a novel approach which avoids randomly sampling a number of Fourier frequencies, and alternatively learns the optimal ones using a variational Bayes approach. The performance of the proposed methods is illustrated in complex problems of cloud detection from multispectral imagery.

010504 meteorology & atmospheric sciencesContextual image classificationComputer scienceMultispectral imageData classification0211 other engineering and technologiesSampling (statistics)02 engineering and technology01 natural sciencessymbols.namesakeBayes' theoremFourier transformKernel (statistics)symbolsGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing
researchProduct

Measuring, modelling and managing gully erosion at large scales: A state of the art

2018

Soil erosion is generally recognized as the dominant process of land degradation. The formation and expansion of gullies is often a highly significant process of soil erosion. However, our ability to assess and simulate gully erosion and its impacts remains very limited. This is especially so at regional to continental scales. As a result, gullying is often overlooked in policies and land and catchment management strategies. Nevertheless, significant progress has been made over the past decades. Based on a review of >590 scientific articles and policy documents, we provide a state-of-the-art on our ability to monitor, model and manage gully erosion at regional to continental scales. In this…

010504 meteorology & atmospheric sciencesData productsDrainage basinGully erosionSpatial data010502 geochemistry & geophysics01 natural sciencesModellingGully erosionGully expansionSpatial analysisSoil Erosion0105 earth and related environmental sciencesgeographygeography.geographical_feature_categorybusiness.industryEnvironmental resource managementSediment yieldSedimentContinental15. Life on landMeasuringRegionalEuropeCurrent (stream)PolicyContinental Europe Gully erosion Gully expansion Gully initiation Measuring Modelling Policy Prediction Regional Sediment yield Spatial dataSection (archaeology)Land degradationGeneral Earth and Planetary SciencesEnvironmental sciencePredictionbusinessGully initiationEarth-Science Reviews
researchProduct

Comparison of gap-filling techniques applied to the CCI soil moisture database in Southern Europe

2021

Abstract Soil moisture (SM) is a key variable that plays an important role in land-atmosphere interactions. Monitoring SM is crucial for many applications and can help to determine the impact of climate change. Therefore, it is essential to have continuous and long-term databases for this variable. Satellite missions have contributed to this; however, the continuity of the series is compromised due to the data gaps derived by different factors, including revisit time, presence of seasonal ice or Radio Frequency Interference (RFI) contamination. In this work, the applicability of different gap-filling techniques is evaluated on the ESA Climate Change Initiative (CCI) SM combined product, whi…

010504 meteorology & atmospheric sciencesDatabaseCorrelation coefficient0208 environmental biotechnologySoil ScienceGeology02 engineering and technologycomputer.software_genre01 natural sciencesNormalized Difference Vegetation Index020801 environmental engineeringRandom forestSupport vector machineAutoregressive modelPrincipal component analysisPotential evaporationComputers in Earth Sciencescomputer0105 earth and related environmental sciencesMathematicsInterpolationRemote sensingRemote Sensing of Environment
researchProduct