Search results for "DELE"

showing 10 items of 631 documents

Amyloid Precursor-like Protein 1 Influences Endocytosis and Proteolytic Processing of the Amyloid Precursor Protein

2005

Ectodomain shedding of the amyloid precursor protein (APP) is a key regulatory step in the generation of the Alzheimer disease amyloid beta peptide (Abeta). The molecular mechanisms underlying the control of APP shedding remain little understood but are in part dependent on the low density lipoprotein receptor-related protein (LRP), which is involved in APP endocytosis. Here, we show that the APP homolog APLP1 (amyloid precursor-like protein 1) influences APP shedding. In human embryonic kidney 293 cells expression of APLP1 strongly activated APP shedding by alpha-secretase and slightly reduced beta-secretase cleavage. As revealed by domain deletion analysis, the increase in APP shedding re…

CytoplasmTime FactorsRecombinant Fusion ProteinsAmino Acid MotifsBlotting WesternGenetic VectorsEndocytic cycleCHO CellsTransfectionEndocytosisBiochemistryCell LineAmyloid beta-Protein PrecursorGenes ReporterCricetinaeChlorocebus aethiopsEndopeptidasesmental disordersAmyloid precursor proteinAnimalsAspartic Acid EndopeptidasesHumansImmunoprecipitationAPLP1Molecular BiologyModels GeneticbiologyChemistryHEK 293 cellsP3 peptideCell BiologyEndocytosisProtein Structure TertiaryMicroscopy FluorescenceBiochemistryAlpha secretaseEctodomainCOS Cellsbiology.proteinAmyloid Precursor Protein SecretasesPeptidesGene DeletionPlasmidsJournal of Biological Chemistry
researchProduct

Interaction of Mitogen-activated Protein Kinases with the Kinase Interaction Motif of the Tyrosine Phosphatase PTP-SL Provides Substrate Specificity …

1999

ERK1 and ERK2 associate with the tyrosine phosphatase PTP-SL through a kinase interaction motif (KIM) located in the juxtamembrane region of PTP-SL. A glutathione S-transferase (GST)-PTP-SL fusion protein containing the KIM associated with ERK1 and ERK2 as well as with p38/HOG, but not with the related JNK1 kinase or with protein kinase A or C. Accordingly, ERK2 showed in vitro substrate specificity to phosphorylate GST-PTP-SL in comparison with GST-c-Jun. Furthermore, tyrosine dephosphorylation of ERK2 by the PTP-SLDeltaKIM mutant was impaired. The in vitro association of ERK1/2 with GST-PTP-SL was highly stable; however, low concentrations of nucleotides partially dissociated the ERK1/2.P…

Cytoplasmanimal structuresProtein Kinase C-alphaRecombinant Fusion ProteinsCèl·lulesNerve Tissue ProteinsProtein tyrosine phosphataseMitogen-activated protein kinase kinaseTransfectionenvironment and public healthBiochemistrySH3 domainReceptor tyrosine kinaseMAP2K7Substrate SpecificitySerineAnimalsc-RafAmino Acid SequenceMolecular BiologyProtein Kinase CSequence DeletionMitogen-Activated Protein Kinase 1Binding SitesMitogen-Activated Protein Kinase 3biologyCyclin-dependent kinase 2Intracellular Signaling Peptides and ProteinsJNK Mitogen-Activated Protein KinasesCell BiologyCyclic AMP-Dependent Protein KinasesIsoenzymesenzymes and coenzymes (carbohydrates)KineticsBiochemistryAmino Acid SubstitutionCOS CellsCalcium-Calmodulin-Dependent Protein Kinasesbiology.proteinMutagenesis Site-DirectedCyclin-dependent kinase 9CattleMitogen-Activated Protein KinasesProtein Tyrosine PhosphatasesProteïnes
researchProduct

Impaired Transporter Associated with Antigen Processing (TAP) Function Attributable to a Single Amino Acid Alteration in the Peptide TAP Subunit TAP1

2003

Abstract The heterodimeric peptide transporter TAP belongs to the ABC transporter family. Sequence comparisons with the P-glycoprotein and cystic fibrosis transmembrane conductance regulator and the functional properties of selective amino acids in these ABC transporters postulated that the glutamic acid at position 263 and the phenylalanine at position 265 of the TAP1 subunit could affect peptide transporter function. To define the role of both amino acids, TAP1 mutants containing a deletion or a substitution to alanine at position 263 or 265 were generated and stably expressed in murine and human TAP1−/− cells. The different TAP1 mutants were characterized in terms of expression and funct…

Cytotoxicity ImmunologicMacromolecular SubstancesPhenylalanineImmunologyAntigen presentationGlutamic AcidATP-binding cassette transporterEndoplasmic ReticulumTransfectionCell LineMiceAdenosine TriphosphateATP Binding Cassette Transporter Subfamily B Member 3MHC class IAnimalsHumansImmunology and AllergyATP Binding Cassette Transporter Subfamily B Member 2Sequence DeletionAlaninechemistry.chemical_classificationAntigen PresentationbiologyHistocompatibility Antigens Class I3T3 CellsIntracellular MembranesTransporter associated with antigen processingMolecular biologyPeptide FragmentsCystic fibrosis transmembrane conductance regulatorAmino acidMice Inbred C57BLProtein SubunitsAmino Acid SubstitutionBiochemistrychemistryMutagenesis Site-Directedbiology.proteinATP-Binding Cassette TransportersTAP1Sequence AlignmentProtein BindingT-Lymphocytes CytotoxicThe Journal of Immunology
researchProduct

Nuclear Localization of PTEN by a Ran-dependent Mechanism Enhances Apoptosis: Involvement of an N-Terminal Nuclear Localization Domain and Multiple N…

2006

The targeting of the tumor suppressor PTEN protein to distinct subcellular compartments is a major regulatory mechanism of PTEN function, by controlling its access to substrates and effector proteins. Here, we investigated the molecular basis and functional consequences of PTEN nuclear/cytoplasmic distribution. PTEN accumulated in the nucleus of cells treated with apoptotic stimuli. Nuclear accumulation of PTEN was enhanced by mutations targeting motifs in distinct PTEN domains, and it was dependent on an N-terminal nuclear localization domain. Coexpression of a dominant negative Ran GTPase protein blocked PTEN accumulation in the nucleus, which was also affected by coexpression of importin…

Cèl·lulesAmino Acid MotifsMolecular Sequence DataNuclear Localization SignalsApoptosisBiologyModels BiologicalCatalysislaw.inventionMicelawChlorocebus aethiopsmedicineAnimalsHumansPTENAmino Acid SequenceProteïnes supressores de tumorsMolecular BiologyCells CulturedSequence DeletionCell NucleusCOS cellsEffectorPTEN Phosphohydrolase3T3 CellsArticlesCell BiologyProtein Structure TertiaryRatsTransport proteinProtein TransportCell nucleusran GTP-Binding Proteinmedicine.anatomical_structureCOS CellsRanbiology.proteinCancer researchSuppressorNuclear localization sequenceHeLa CellsMolecular Biology of the Cell
researchProduct

LA DICHIARAZIONE INFEDELE

2011

IL CONTRIBUTO HA PER OGGETTO IL COMMENTO ALL'ART.5 DEL D.LGS.N.471/1997, NELLA PARTE IN CUI DISCIPLINA LA SANZIONE IRROGABILE PER L'INFEDELTA' DELLA DICHIARAZIONE ANNUALE AI FINI DELL'IVA

DICHIARAZIONE INFEDELE IVASettore IUS/12 - Diritto Tributario
researchProduct

Interaction with OGG1 Is Required for Efficient Recruitment of XRCC1 to Base Excision Repair and Maintenance of Genetic Stability after Exposure to O…

2015

International audience; XRCC1 is an essential protein required for the maintenance of genomic stability through its implication in DNA repair. The main function of XRCC1 is associated with its role in the single-strand break (SSB) and base excision repair (BER) pathways that share several enzymatic steps. We show here that the polymorphic XRCC1 variant R194W presents a defect in its interaction with the DNA glycosylase OGG1 after oxidative stress. While proficient for single-strand break repair (SSBR), this variant does not colocalize with OGG1, reflecting a defect in its involvement in BER. Consistent with a role of XRCC1 in the coordination of the BER pathway, induction of oxidative base …

DNA RepairDNA repairCHO CellsOxidative phosphorylation[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC]Biologymedicine.disease_causePolymorphism Single NucleotideDNA-binding proteinCell LineDNA GlycosylasesXRCC1Cricetulusmedicine[SDV.BC.BC] Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC]AnimalsHumansProtein Interaction Maps[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Molecular Biology[SDV.BBM.BC] Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]GeneticsArticlesCell BiologyBase excision repairDNA-Binding ProteinsOxidative StressX-ray Repair Cross Complementing Protein 1DNA glycosylaseGene DeletionOxidative stressNucleotide excision repair
researchProduct

Cloning, deletion, and characterization of PadR, the transcriptional repressor of the phenolic acid decarboxylase-encoding padA gene of Lactobacillus…

2004

ABSTRACTLactobacillus plantarumdisplays a substrate-induciblepadAgene encoding a phenolic acid decarboxylase enzyme (PadA) that is considered a specific chemical stress response to the inducing substrate. The putative regulator ofpadAwas located in thepadAlocus based on its 52% identity with PadR, thepadAgene transcriptional regulator ofPediococcus pentosaceus(L. Barthelmebs, B. Lecomte, C. Diviès, and J.-F. Cavin, J. Bacteriol.182:6724-6731, 2000). Deletion of theL. plantarum padRgene clearly demonstrates that the protein it encodes is the transcriptional repressor of divergently orientedpadA. ThepadRgene is cotranscribed with a downstream open reading frame (ORF1), the product of which m…

DNA BacterialCoumaric AcidsCarboxy-LyasesMolecular Sequence DataRepressorGenetics and Molecular BiologyBiologymedicine.disease_causeApplied Microbiology and BiotechnologyOpen Reading FramesBacterial ProteinsTranscription (biology)Transcriptional regulationmedicineAmino Acid SequenceCloning MolecularPromoter Regions GeneticGeneEscherichia coliDNA PrimersBinding SitesEcologyBase SequenceSequence Homology Amino Acidfood and beveragesPromoterbiology.organism_classificationMolecular biologyRepressor ProteinsOpen reading frameLactobacillusBiochemistryGenes BacterialPropionatesLactobacillus plantarumGene DeletionFood ScienceBiotechnologyApplied and environmental microbiology
researchProduct

The Evolutionary Fate of Nonfunctional DNA in the Bacterial Endosymbiont Buchnera aphidicola

2004

Reduction of the genome size in endosymbiotic bacteria is the main feature linked to the adaptation to a host-associated lifestyle. We have analyzed the fate of the nonfunctional DNA in Buchnera aphidicola, the primary endosymbiont of aphids. At least 164 gene losses took place during the recent evolution of three B. aphidicola strains, symbionts of the aphids Acyrthosiphon pisum (BAp), Schizaphis graminum (BSg), and Baizongia pistacia (BBp). A typical pattern starts with the inactivation of a gene, which produces a pseudogene, and is followed by the progressive loss of its DNA. Our results show that during the period from the separation of the Aphidinae and Pemphiginae lineages (86-164 MYA…

DNA BacterialGeneticsTime FactorsModels GeneticPseudogenemyrDNASequence Analysis DNABiologybiology.organism_classificationGenomeEvolution MolecularIntergenic regionBuchneraSpecies SpecificityEscherichia coliGeneticsBuchneraMolecular BiologyGeneGenome sizeGene DeletionGenome BacterialEcology Evolution Behavior and SystematicsGC-contentMolecular Biology and Evolution
researchProduct

Conjugative plasmid pIP501 undergoes specific deletions after transfer from Lactococcus lactis to Oenococcus oeni

2003

Conjugal transfer of plasmids pIP501 and its derivative pVA797 from Lactococcus lactis to Oenococcus oeni was assayed by filter mating. Plasmid pIP501 was transferred to a number of O. oeni strains whereas a single transconjugant of O. oeni M42 was recovered when pVA797 was used. Physical analysis of the transconjugant plasmids revealed that pIP501 and pVA797 underwent extensive deletions in O. oeni that affected the tra region (conjugal transfer) and SegB region (stability). All derivatives showed segregational instability in O. oeni, but were stably maintained in L. lactis. These differences correlated with the different plasmid copy numbers and the extent of deletions within the SegB reg…

DNA BacterialMolecular Sequence DataRestriction Mappingmedicine.disease_causeBiochemistryMicrobiologyPlasmidGene OrderGeneticsmedicineAmino Acid SequenceMolecular BiologySequence DeletionOenococcus oeniGeneticsMutationBase SequencebiologyStrain (chemistry)Lactococcus lactisConjugative plasmidGeneral Medicinebiology.organism_classificationStreptococcaceaeGram-Positive CocciLactococcus lactisGenes BacterialConjugation GeneticGene DeletionLeuconostocBacteriaPlasmidsArchives of Microbiology
researchProduct

Concomitant loss of conformation and superantigenic activity of staphylococcal enterotoxin B deletion mutant proteins.

1993

The T-cell-stimulating activity of staphylococcal enterotoxin B (SEB) is an important factor in the pathogenesis of certain staphylococcal diseases. To investigate the immunologically active domains of the SEB molecule, we have produced truncated fragments of recombinant SEB by C-terminal and N-terminal deletions. The fragments were expressed as fusion proteins with protein A, including a cleavage site to remove the protein A part. Mutant proteins were tested for the ability to stimulate human resting T cells and SEB-reactive T-cell clones. Deletion of only 9 amino acids from the C terminus leads to complete loss of T-cell-stimulating activity. Removing further amino acids from the SEB mole…

DNA BacterialStaphylococcus aureusRecombinant Fusion ProteinsImmunologyMutantMolecular Sequence DataBiologyMicrobiologyEpitopeEnterotoxinsMiceStructure-Activity RelationshipMutant proteinAnimalsAmino Acid SequencePeptide sequencechemistry.chemical_classificationAntigens BacterialMice Inbred BALB CBase SequenceC-terminusFusion proteinMolecular biologyAmino acidInfectious DiseaseschemistryMutationParasitologyGene DeletionConformational epitopeResearch Article
researchProduct