Search results for "DESICCATION"

showing 10 items of 91 documents

2020

Animals engage in a plethora of mutualistic interactions with microorganisms that can confer various benefits to their host but can also incur context-dependent costs. The sawtoothed grain beetle Oryzaephilus surinamensis harbors nutritional, intracellular Bacteroidetes bacteria that supplement precursors for the cuticle synthesis and thereby enhance desiccation resistance of its host. Experimental elimination of the symbiont impairs cuticle formation and reduces fitness under desiccation stress but does not disrupt the host’s life cycle. For this study, we first demonstrated that symbiont populations showed the strongest growth at the end of metamorphosis and then declined continuously in …

0106 biological sciences0303 health sciencesbiologyHost (biology)media_common.quotation_subjectfungifood and beveragesZoologyOryzaephilus surinamensisbiology.organism_classification010603 evolutionary biology01 natural sciences03 medical and health sciencesAposymbioticSymbiosisInsect ScienceSexual maturityPEST analysisMetamorphosisDesiccation030304 developmental biologymedia_commonInsects
researchProduct

Anhydrobiosis in yeasts: Psychrotolerant yeasts are highly resistant to dehydration.

2018

Yeast cells are able to transition into a state of anhydrobiosis (temporary reversible suspension of metabolism) under conditions of desiccation. One of the most efficient approaches for understanding the mechanisms underlying resistance to dehydration-rehydration is to identify yeasts, which are stable under such treatments, and compare them with moderately resistant species and strains. In the current study, we investigated the resistance to dehydration-rehydration of six psychrotolerant yeast strains belonging to two species. All studied strains of Solicoccozyma terricola and Naganishia albida were found to be highly resistant to dehydration-rehydration. The viability of S. terricola str…

0106 biological sciencesBioengineeringBiology01 natural sciencesApplied Microbiology and BiotechnologyBiochemistryPermeabilityCell membrane03 medical and health sciences010608 biotechnologyYeastsGeneticsmedicinedehydration–rehydrationViability assayDesiccationCryptobiosis030304 developmental biology0303 health sciencesMicrobial ViabilityMicrobial ViabilityDehydrationCell MembraneMetabolismanhydrobiosisYeastanhydrobiosis; dehydration–rehydration; plasma membrane permeability; resistance to desiccation; Cell Membrane; Desiccation; Permeability; Yeasts; Dehydration; Microbial ViabilityMembranemedicine.anatomical_structureBiochemistryDesiccationplasma membrane permeabilityresistance to desiccationBiotechnologyYeast (Chichester, England)
researchProduct

Changes in Energy Status of Saccharomyces cerevisiae Cells During Dehydration and Rehydration

2021

Anhydrobiosis is the state of life when cells are exposed to waterless conditions and gradually cease their metabolism. In this study, we determined the sequence of events in Saccharomyces cerevisiae energy metabolism during processes of dehydration and rehydration. The intensities of respiration and acidification of the medium, the amounts of phenyldicarbaundecaborane (PCB−) bound to yeast membranes, and the capabilities of cells to accumulate K+ were assayed using an electrochemical monitoring system, and the intracellular content of ATP was measured using a bioluminescence assay. Mesophilic, semi-resistant to desiccation S. cerevisiae strain 14 and thermotolerant, very resistant to desic…

0106 biological sciencesMicrobiology (medical)Saccharomyces cerevisiaeyeast01 natural sciencesMicrobiologyArticle03 medical and health scienceschemistry.chemical_compound010608 biotechnologyVirologymedicinebiochemistrydehydration–rehydrationDehydrationCryptobiosislcsh:QH301-705.5030304 developmental biology0303 health sciencesGrowth mediumStrain (chemistry)biologyMetabolismanhydrobiosisbiology.organism_classificationmedicine.diseaseYeastmitochondrialcsh:Biology (General)chemistryBiochemistryDesiccationmetabolism
researchProduct

Resistance of a recombinant Escherichia coli to dehydration.

2009

International audience; Dehydration of microorganisms, rendering them anhydrobiotic, is often an efficient method for the short and long term conservation of different strain-producers. However, some biotechnologically important recombinant bacterial strains are extremely sensitive to conventional treatment. We describe appropriate conditions during dehydration of the recombinant Escherichia coli strain HB 101 (GAPDH) that can result dry cells having a 88% viability on rehydration. The methods entails air-drying after addition of 100 mM trehalose to the cultivation medium or distilled water (for short term incubation).

0106 biological sciencesMicroorganismPreservation BiologicalBiologymedicine.disease_cause01 natural scienceslaw.inventionRecombinant strain03 medical and health scienceschemistry.chemical_compoundlaw010608 biotechnologymedicineEscherichia coli[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringDehydrationDesiccationCryptobiosisIncubationEscherichia coli030304 developmental biologyRecombination Genetic0303 health sciencesMicrobial ViabilityDehydrationTrehaloseCell BiologyGeneral MedicineRehydrationmedicine.diseaseAnhydrobiosisTrehaloseCell resistanceDistilled waterBiochemistrychemistryRecombinant DNACell biology international
researchProduct

Distinct lytic vacuolar compartments are embedded inside the protein storage vacuole of dry and germinating Arabidopsis thaliana seeds.

2011

International audience; Plant cell vacuoles are diverse and dynamic structures. In particular, during seed germination, the protein storage vacuoles are rapidly replaced by a central lytic vacuole enabling rapid elongation of embryo cells. In this study, we investigate the dynamic remodeling of vacuolar compartments during Arabidopsis seed germination using immunocytochemistry with antibodies against tonoplast intrinsic protein (TIP) isoforms as well as proteins involved in nutrient mobilization and vacuolar acidification. Our results confirm the existence of a lytic compartment embedded in the protein storage vacuole of dry seeds, decorated by γ-TIP, the vacuolar proton pumping pyrophospha…

0106 biological sciencesPhysiologyProtein storage vacuoleProton-pumping pyrophosphataseArabidopsisPlant ScienceVacuoleUNIQUEMESH: Protein Isoforms01 natural sciencesPYROPHOSPHATASEArabidopsisProtein IsoformsMESH: ArabidopsisH+-ATPASETONOPLAST INTRINSIC PROTEINPLANT-CELLSCation Transport ProteinsIN-VIVOPlant Proteinschemistry.chemical_classification0303 health sciencesMESH: Plant ProteinsGeneral MedicineCell biologyProtein TransportVacuolar acidificationLytic cycleSeedsPREVACUOLAR COMPARTMENTMESH: DesiccationVacuolar Proton-Translocating ATPasesMESH: Protein TransportMESH: Vacuolar Proton-Translocating ATPasesGerminationMESH: Arabidopsis ProteinsMESH: GerminationBiologyAquaporinsMESH: Vacuoles03 medical and health sciencesMESH: AquaporinsMESH: Cation Transport ProteinsStorage protein[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyLytic vacuoleDesiccation030304 developmental biologySeedArabidopsis ProteinsCell Biologybiology.organism_classificationTRANSPORTchemistryMESH: SeedsVacuolesVacuoleMEMBRANEMOBILIZATION010606 plant biology & botany
researchProduct

Changes in the physiological and agricultural characteristics of peat-based Bradyrhizobium japonicum inoculants after long-term storage

2000

International audience; Commercial soybean inoculants processed with sterilised peat and stored at 20 °C for 1–8 years were used as experimental materials to assess the changes in the physiological activity of Bradyrhizobium japonicum after storage. Viable counts decreased and physiological characteristics of the bacterium changed during storage, with an increase in the time taken for colony appearance on a medium without yeast extract, an increase in the lag time for nodule appearance on soybean grown in glass tubes and a decrease in survival on seeds. All the inoculants produced a significant increase in grain yield in a field experiment. The percentage of efficient cells in the field (re…

0106 biological sciencesTime FactorsField experimentMicroorganismColony Count MicrobialBiologyRhizobacteria01 natural sciencesApplied Microbiology and Biotechnology03 medical and health sciencesYeast extractBradyrhizobiumDesiccation[SDV.MP] Life Sciences [q-bio]/Microbiology and ParasitologyMicrobial inoculantSoil Microbiology2. Zero hunger0303 health sciences030306 microbiologyCrop yieldfood and beveragesSoil classificationGeneral Medicinebiology.organism_classificationHorticulture[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyAgronomySoybeans010606 plant biology & botanyBiotechnologyBradyrhizobium japonicumApplied Microbiology and Biotechnology
researchProduct

Anhydrobiosis: Inside yeast cells

2018

International audience; Under natural conditions yeast cells as well as other microorganisms are regularly subjected to the influence of severe drought, which leads to their serious dehydration. The dry seasons are then changed by rains and there is a restoration of normal water potential inside the cells. To survive such seasonal changes a lot of vegetative microbial cells, which belong to various genera and species, may be able to enter into a state of anhydrobiosis, in which their metabolism is temporarily and reversibly suspended or delayed. This evolutionarily developed adaptation to extreme conditions of the environment is widely used for practical goals - for conservation of microorg…

0106 biological scienceslipid-phaseCell Survivaldesiccation toleranceMicroorganismBiophysicsBioengineeringSaccharomyces cerevisiaeBiology01 natural sciencesApplied Microbiology and BiotechnologyDehydration-rehydrationDesiccation tolerance03 medical and health scienceswine yeastIntracellular protective reactions010608 biotechnology[SDV.IDA]Life Sciences [q-bio]/Food engineeringOrganelle[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineeringwater replacement hypothesisLaboratorium voor PlantenfysiologieDesiccationCryptobiosismembrane phase-transitions030304 developmental biology0303 health sciencesDehydrationWaterendoplasmic-reticulumplasma-membraneAnhydrobiosisYeastYeastDehydration–rehydrationYeast in winemaking[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyBiofysicaCellular MicroenvironmentIntracellular changesBiochemistryglass-transitioncandida-utilis cellsEPSAdaptationDesiccationsaccharomyces-cerevisiae cellsLaboratory of Plant PhysiologyBiotechnologyBiotechnology Advances
researchProduct

Eco-genetics of desiccation resistance in Drosophila.

2021

International audience; Climate change globally perturbs water circulation thereby influencing ecosystems including cultivated land. Both harmful and beneficial species of insects are likely to be vulnerable to such changes in climate. As small animals with a disadvantageous surface area to body mass ratio, they face a risk of desiccation. A number of behavioural, physiological and genetic strategies are deployed to solve these problems during adaptation in various Drosophila species. Over 100 desiccation-related genes have been identified in laboratory and wild populations of the cosmopolitan fruit fly Drosophila melanogaster and its sister species in large-scale and single-gene approaches…

0106 biological sciencesved/biology.organism_classification_rank.speciesPopulationGenome Insectadaptation010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyDesiccation tolerance03 medical and health sciencesGenetic variationevolutionAnimalsDesiccationModel organismeducationDrosophilagenomeclimateEcosystem030304 developmental biology0303 health scienceseducation.field_of_studybiologyved/biology[SDV.BA]Life Sciences [q-bio]/Animal biology[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]15. Life on landbiology.organism_classificationAdaptation PhysiologicalDrosophila melanogaster13. Climate actionEvolutionary biologyinsectDrosophilaDrosophila melanogasterAdaptation[SDV.EE.BIO]Life Sciences [q-bio]/Ecology environment/BioclimatologyGeneral Agricultural and Biological SciencesDesiccationBiological reviews of the Cambridge Philosophical SocietyREFERENCES
researchProduct

Drying parameters greatly affect the destruction of Cronobacter sakazakii and Salmonella Typhimurium in standard buffer and milk

2017

International audience; Salmonella Typhimurium and Cronobacter sakazakii are two foodborne pathogens involved in neonatal infections from milk powder and infant formula. Their ability to survive in low-moisture food and during processing from the decontamination to the dried state is a major issue in food protection. In this work, we studied the effects of the drying process on Salmonella Typhimurium and Cronobacter sakazakii, with the aim of identifying the drying parameters that could promote greater inactivation of these two foodborne pathogens. These two bacteria were dried under different atmospheric relative humidities in milk and phosphate-buffered saline, and the delays in growth re…

0301 basic medicineEnterobacter-sakazakiiSevere dehydrationSalmonellaWater activitySurvivalMicroorganismDesiccation tolerance030106 microbiologyResistanceDrying conditionsLow-moisture foodsInfant formulasBuffersmedicine.disease_causeMicrobiologyMicrobiologyCultivability03 medical and health sciencesCronobacter sakazakiiStrain variabilitymedicineAnimalsFood scienceDesiccationThermal-destructionMicrobial Viabilitybiologybusiness.industry[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringHuman decontaminationFood safetybiology.organism_classificationCronobacter sakazakiiKineticsMilkInfant formulaSalmonella TyphimuriumFood MicrobiologybusinessBacteriaFood ScienceWater activity
researchProduct

A highly diverse, desert-like microbial biocenosis on solar panels in a Mediterranean city

2015

AbstractMicroorganisms colonize a wide range of natural and artificial environments although there are hardly any data on the microbial ecology of one the most widespread man-made extreme structures: solar panels. Here we show that solar panels in a Mediterranean city (Valencia, Spain) harbor a highly diverse microbial community with more than 500 different species per panel, most of which belong to drought-, heat- and radiation-adapted bacterial genera, and sun-irradiation adapted epiphytic fungi. The taxonomic and functional profiles of this microbial community and the characterization of selected culturable bacteria reveal the existence of a diverse mesophilic microbial community on the …

0301 basic medicineMediterranean climateMultidisciplinaryBacteriaintegumentary systemMediterranean RegionRange (biology)EcologyMicrobiotaMicroorganism030106 microbiologyFungiBiologyArticle03 medical and health sciencesMicrobial ecosystem030104 developmental biologyMicrobial ecologyMicrobial population biologySpainEnvironmental MicrobiologyEpiphyteCitiesDesiccationScientific Reports
researchProduct