Search results for "DOMAINS"

showing 10 items of 269 documents

Structure, interdomain dynamics, and pH-dependent autoactivation of pro-rhodesain, the main lysosomal cysteine protease from African trypanosomes

2021

AbstractRhodesain is the lysosomal cathepsin L-like cysteine protease ofT. brucei rhodesiense, the causative agent of Human African Trypanosomiasis. The enzyme is essential for the proliferation and pathogenicity of the parasite as well as its ability to overcome the blood-brain barrier of the host. Lysosomal cathepsins are expressed as zymogens with an inactivating pro-domain that is cleaved under acidic conditions. A structure of the uncleaved maturation intermediate from a trypanosomal cathepsin L-like protease is currently not available. We thus established the heterologous expression ofT. brucei rhodesiensepro-rhodesain inE. coliand determined its crystal structure. The trypanosomal pr…

Models MolecularTrypanosoma brucei rhodesiense0301 basic medicinemedicine.medical_treatmentBiochemistrycysteine proteaseproenzymefluorescence correlation spectroscopy (FCS)Trypanosoma bruceiBBB blood–brain barrierCD circular dichroismchemistry.chemical_classificationEnzyme PrecursorsbiologyChemistryhsCathL human cathepsin LHydrogen-Ion ConcentrationCysteine proteaseFCS fluorescence correlation spectroscopyCysteine EndopeptidasesBiochemistryHAT Human African TrypanosomiasisNTD neglected tropical diseaseResearch Articlecrystal structureProteasesSEC size-exclusion chromatographyPET-FCS photoinduced electron transfer–fluorescence correlation spectroscopyAfrican Sleeping SicknessTrypanosoma bruceiCleavage (embryo)03 medical and health sciencesTbCathB T. brucei cathepsin BProtein DomainsZymogenmedicineMolecular BiologyzymogenrhodesainCathepsinProtease030102 biochemistry & molecular biologyActive siteTrypanosoma brucei rhodesienseCell Biologybiology.organism_classificationmolecular dynamicsEnzyme ActivationEnzyme030104 developmental biologybiology.proteinautoinhibitionHeterologous expressionJournal of Biological Chemistry
researchProduct

Structure of the human filamin A actin-binding domain.

2009

Filamin A (FLNa) is a large dimeric protein that binds to actin filaments via its actin-binding domain (ABD). The crystal structure of this domain was solved at 3.2 A resolution. The domain adopts a closed conformation typical of other ABDs, but also forms a dimer both in crystallization conditions and in solution. The structure shows the localization of the residues mutated in patients with periventricular nodular heterotopia or otopalatodigital syndrome. Structural analysis predicts that mutations in both types of disorder may affect actin binding.

Models Molecularanimal structuresDimerFilaminsmacromolecular substancesFilaminCalponin homology domainCrystallography X-Raychemistry.chemical_compoundContractile ProteinsStructural BiologyFLNAHumansProtein Interaction Domains and MotifsActin-binding proteinProtein Structure QuaternaryActinbiologyMicrofilament ProteinsGeneral MedicineActinschemistryStructural Homology ProteinDomain (ring theory)Mutationbiology.proteinBiophysicsBinding domainProtein BindingActa crystallographica. Section D, Biological crystallography
researchProduct

A supramolecular system that strictly follows the binding mechanism of conformational selection

2020

Induced fit and conformational selection are two dominant binding mechanisms in biology. Although induced fit has been widely accepted by supramolecular chemists, conformational selection is rarely studied with synthetic systems. In the present research, we report a macrocyclic host whose binding mechanism is unambiguously assigned to conformational selection. The kinetic and thermodynamic aspects of this system are studied in great detail. It reveals that the kinetic equation commonly used for conformational selection is strictly followed here. In addition, two mathematical models are developed to determine the association constants of the same guest to the two host conformations. A “confo…

Models Molecularconformational selectionProtein ConformationScienceSupramolecular chemistrybiological systemsGeneral Physics and Astronomy010402 general chemistryLigands01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyBiophysical PhenomenaArticlesupramolecular chemistryMolecular recognitionProtein structureProtein DomainsComputational chemistryHeterocyclic Compoundsmechanisms in biologysupramolekulaarinen kemialcsh:ScienceSelection (genetic algorithm)Multidisciplinary010405 organic chemistryMechanism (biology)QProteinsGeneral ChemistryModels Theoretical0104 chemical sciencesKineticsPhysical chemistryKinetic equationsProteins metabolismsynthetic systemsThermodynamicslcsh:Qmolecular recognitionSupramolecular chemistryProtein Binding
researchProduct

Interaction of Circadian Clock Proteins CRY1 and PER2 Is Modulated by Zinc Binding and Disulfide Bond Formation

2014

SummaryPeriod (PER) proteins are essential components of the mammalian circadian clock. They form complexes with cryptochromes (CRY), which negatively regulate CLOCK/BMAL1-dependent transactivation of clock and clock-controlled genes. To define the roles of mammalian CRY/PER complexes in the circadian clock, we have determined the crystal structure of a complex comprising the photolyase homology region of mouse CRY1 (mCRY1) and a C-terminal mouse PER2 (mPER2) fragment. mPER2 winds around the helical mCRY1 domain covering the binding sites of FBXL3 and CLOCK/BMAL1, but not the FAD binding pocket. Our structure revealed an unexpected zinc ion in one interface, which stabilizes mCRY1-mPER2 int…

Models Molecularendocrine systemanimal structuresPeriod (gene)Molecular Sequence DataCircadian clockBiologyCrystallography X-RayGeneral Biochemistry Genetics and Molecular BiologyMiceCryptochromeAnimalsProtein Interaction Domains and MotifsAmino Acid SequenceCircadian rhythmBinding siteBiochemistry Genetics and Molecular Biology(all)F-Box ProteinsPeriod Circadian ProteinsRecombinant ProteinsCryptochromesPER2ZincBiochemistryFAD bindingBiophysicsPeriod Circadian ProteinsSequence AlignmentCell
researchProduct

The C-terminal rod 2 fragment of filamin A forms a compact structure that can be extended

2012

Filamins are large proteins that cross-link actin filaments and connect to other cellular components. The C-terminal rod 2 region of FLNa (filamin A) mediates dimerization and interacts with several transmembrane receptors and intracellular signalling adaptors. SAXS (small-angle X-ray scattering) experiments were used to make a model of a six immunoglobulin-like domain fragment of the FLNa rod 2 (domains 16–21). This fragment had a surprising three-branched structural arrangement, where each branch was made of a tightly packed two-domain pair. Peptides derived from transmembrane receptors and intracellular signalling proteins induced a more open structure of the six domain fragment. Mutagen…

Models Moleculargenetics [Receptors Dopamine D3]metabolism [Recombinant Proteins]Protein Conformationgenetics [Antigens CD18]chemistry [Recombinant Proteins]Plasma protein bindingCrystallography X-RayLigandsFilaminmetabolism [Antigens CD18]metabolism [Cytoskeletal Proteins]BiochemistryfilaminsContractile ProteinsProtein structuremetabolism [Peptide Fragments]FLNAchemistry [Antigens CD18]genetics [Cell Adhesion Molecules]Small-angle X-ray scatteringMicrofilament Proteinsgenetics [Contractile Proteins]Recombinant Proteinschemistry [Receptors Dopamine D3]FBLIM1 protein humanddc:540Domain (ring theory)DimerizationProtein Bindingchemistry [Contractile Proteins]FilaminsAntigens CD18metabolism [Cell Adhesion Molecules]BiologyScattering Small Anglemetabolism [Receptors Dopamine D3]Humanschemistry [Microfilament Proteins]Protein Interaction Domains and Motifsmetabolism [Mutant Proteins]DRD3 protein humanMolecular Biologymetabolism [Contractile Proteins]Actingenetics [Cytoskeletal Proteins]Cryoelectron MicroscopyMutagenesista1182Receptors Dopamine D3metabolism [Microfilament Proteins]Cell Biologychemistry [Cell Adhesion Molecules]genetics [Peptide Fragments]Peptide FragmentsCytoskeletal ProteinsCrystallographychemistry [Mutant Proteins]chemistry [Peptide Fragments]CD18 AntigensBiophysicschemistry [Cytoskeletal Proteins]Mutant Proteinsgenetics [Microfilament Proteins]Cell Adhesion MoleculesBiochemical Journal
researchProduct

Sequential conformational transitions and α-helical supercoiling regulate a sensor histidine kinase

2017

Sensor histidine kinases are central to sensing in bacteria and in plants. They usually contain sensor, linker, and kinase modules and the structure of many of these components is known. However, it is unclear how the kinase module is structurally regulated. Here, we use nano- to millisecond time-resolved X-ray scattering to visualize the solution structural changes that occur when the light-sensitive model histidine kinase YF1 is activated by blue light. We find that the coiled coil linker and the attached histidine kinase domains undergo a left handed rotation within microseconds. In a much slower second step, the kinase domains rearrange internally. This structural mechanism presents a t…

Models MolecularkinaasitentsyymitHistidine KinaseLightProtein ConformationScienceQCrystallography X-RayArticleProtein Structure SecondaryaktivointiBacterial ProteinsProtein DomainsX-Ray DiffractionphotoactivationScattering Small AngleNanotechnologysensor histidine kinasesNature Communications
researchProduct

High-quality discretizations for microwave simulations

2016

We apply high-quality discretizations to simulate electromagnetic microwaves. Instead of the vector field presentations, we focus on differential forms and discretize the model in the spatial domain using the discrete exterior calculus. At the discrete level, both the Hodge operators and the time discretization are optimized for time-harmonic simulations. Non-uniform spatial and temporal discretization are applied in problems in which the wavelength is highly-variable and geometry contains sub-wavelength structures. peerReviewed

Noise measurementDiscretizationDifferential formMathematical analysisFinite difference methodnoise measurement010103 numerical & computational mathematicsmagnetic domainstime-domain analysis01 natural sciencesDiscrete exterior calculusVector field0101 mathematicsTemporal discretizationmicrowave theory and techniquesFocus (optics)finite difference methodskasvotMathematics2016 URSI International Symposium on Electromagnetic Theory (EMTS)
researchProduct

Functional categories of TP53 mutation in colorectal cancer: results of an International Collaborative Study.

2006

Item does not contain fulltext BACKGROUND: Loss of TP53 function through gene mutation is a critical event in the development and progression of many tumour types including colorectal cancer (CRC). In vitro studies have found considerable heterogeneity amongst different TP53 mutants in terms of their transactivating abilities. The aim of this work was to evaluate whether TP53 mutations classified as functionally inactive (< or=20% of wildtype transactivation ability) had different prognostic and predictive values in CRC compared with mutations that retained significant activity. MATERIALS AND METHODS: TP53 mutations within a large, international database of CRC (n = 3583) were classified ac…

Oncologyp53MaleNutrition and Diseasebinding domainsLymphovascular invasionColorectal cancerDNA Mutational AnalysisAetiology screening and detection [ONCOL 5]Gene mutationmedicine.disease_causeTransactivationVoeding en ZiekteAntineoplastic Combined Chemotherapy ProtocolsDeterminants in Health and Disease [EBP 1]transcriptional activityMutationHematologyExonsMiddle AgedSurvival RateOncologyAdenocarcinomaFemaleColorectal Neoplasmsmedicine.medical_specialtyAdenocarcinomachemotherapy colorectal cancer mutation prognosis TP53 transactivational abilityMolecular epidemiology [NCEBP 1]Breast cancerTranslational research [ONCOL 3]Interventional oncology [UMCN 1.5]Internal medicinemedicineHumansNeoplasm InvasivenessSurvival rateneoplasmsbreast-cancerVLAGAgedNeoplasm StagingHereditary cancer and cancer-related syndromes [ONCOL 1]business.industryInternational Agenciesmedicine.diseaseImmunologyMutationTumor Suppressor Protein p53businessFollow-Up Studies
researchProduct

Lipid rafts: a signalling platform linking lipoprotein metabolism to atherogenesis.

2012

Lipid rafts are microdomains of the plasma membrane which are enriched in cholesterol and sphingolipids. They serve as a platform for signal transduction, in particular during immune and inflammatory responses. As hypercholesterolemia and inflammation are two key elements of atherogenesis, it is conceivable that the cholesterol and cholesterol oxide content of lipid rafts might influence the inflammatory signalling pathways, thus modulating the development of atherosclerosis. In support of this emerging view, lipid rafts have been shown to be involved in several key steps of atherogenesis, such as the oxysterol-mediated apoptosis of vascular cells, the blunted ability of high density lipopr…

OxysterolCholesterolLipoproteinsInflammationAtherosclerosisSphingolipidCell biologychemistry.chemical_compoundCholesterolMembrane MicrodomainschemistryLipid dropletmedicineAnimalsBlood VesselsHumanslipids (amino acids peptides and proteins)Signal transductionmedicine.symptomInflammation MediatorsCardiology and Cardiovascular MedicineLipid raftLipoproteinSignal TransductionAtherosclerosis
researchProduct

The cytoplasmic PASC domain of the sensor kinase DcuS of Escherichia coli : role in signal transduction, dimer formation, and DctA interaction

2013

The cytoplasmic PAS(C) domain of the fumarate responsive sensor kinase DcuS of Escherichia coli links the transmembrane to the kinase domain. PAS(C) is also required for interaction with the transporter DctA serving as a cosensor of DcuS. Earlier studies suggested that PAS(C) functions as a hinge and transmits the signal to the kinase. Reorganizing the PAS(C) dimer interaction and, independently, removal of DctA, converts DcuS to the constitutive ON state (active without fumarate stimulation). ON mutants were categorized with respect to these two biophysical interactions and the functional state of DcuS: type I-ON mutations grossly reorganize the homodimer, and decrease interaction with Dct…

PAS domainDicarboxylic Acid TransportersModels MolecularfumarateProtein ConformationEscherichia coli ProteinsDNA Mutational AnalysisDctAModels Biological570 Life sciencessignal transduction.Escherichia coliProtein Interaction Domains and MotifsProtein MultimerizationDcuS sensor kinaseProtein KinasesOriginal ResearchSignal Transduction570 Biowissenschaften
researchProduct