Search results for "DOMAINS"

showing 10 items of 269 documents

Possible Transmission Flow of SARS-CoV-2 Based on ACE2 Features

2020

Angiotensin-converting enzyme 2 (ACE2) is the cellular receptor for the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that is engendering the severe coronavirus disease 2019 (COVID-19) pandemic. The spike (S) protein receptor-binding domain (RBD) of SARS-CoV-2 binds to the three sub-domains viz. amino acids (aa) 22&ndash

Pan troglodytesvirusesProtein domainACE2Pharmaceutical ScienceBiologyArticleAnalytical Chemistrylcsh:QD241-44103 medical and health sciencesDogs0302 clinical medicineProtein DomainsSpecies Specificitylcsh:Organic chemistryDrug DiscoveryAnimalsHumansviral spike receptor-binding domainPhysical and Theoretical ChemistryReceptor030304 developmental biologychemistry.chemical_classification0303 health sciencesCATSSARS-CoV-2Transmission (medicine)fungiOrganic ChemistrytransmissionCOVID-19virus diseasesbioinformaticsMetabolismVirologyAmino acidEnzymechemistryChemistry (miscellaneous)030220 oncology & carcinogenesisSpike Glycoprotein CoronavirusAngiotensin-converting enzyme 2CatsMolecular MedicineCattleAngiotensin-Converting Enzyme 2hormones hormone substitutes and hormone antagonistsMolecules
researchProduct

Emergence of the stripe-domain phase in patterned permalloy films

2016

The occurrence of stripe domains in ferromagnetic Permalloy (Py=Fe$_{20}$Ni$_{80}$) is a well known phenomenon which has been extensively observed and characterized. This peculiar magnetic configuration appears only in films with a thickness above a critical value ($d_{cr}$), which is strongly determined by the sputtering conditions (i.e. deposition rate, temperature, magnetic field). So far, $d_{cr}$ has usually been presented as the boundary between the homogeneous (H) and stripe-domains (SD) regime, respectively below and above $d_{cr}$. In this work we study the transition from the H to the SD regime in thin films and microstructured bridges of Py with different thicknesses. We find the…

PermalloyMaterials scienceMagnetoresistanceFerromagnetismeFOS: Physical sciences02 engineering and technology01 natural sciencesCondensed Matter::Materials ScienceSputteringPhase (matter)Mesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesMagnetoresistènciaThin filmFilmsMagnetic domains010302 applied physicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsMagnetoresistanceCoercivity021001 nanoscience & nanotechnologyPermalloyMagnetic fieldFerromagnetismFerromagnetism0210 nano-technologyMagnetic domains; Permalloy; Films
researchProduct

Effects of nonlinearity and substrate’s deformability on modulation instability in NKG equation

2017

International audience; This article investigates combined effects of nonlinearities and substrate's deformability on modulational instability. For that, we consider a lattice model based on the nonlinear Klein-Gordon equation with an on-site potential of deformable shape. Such a consideration enables to broaden the description of energy-localization mechanisms in various physical systems. We consider the strong-coupling limit and employ semi-discrete approximation to show that nonlinear wave modulations can be described by an extended nonlinear Schrodinger equation containing a fourth-order dispersion component. The stability of modulation of carrier waves is scrutinized and the following …

Physical systemModulational instability01 natural sciencesInstability010309 opticssymbols.namesakeDeformable lattice0103 physical sciencesNumerical simulations[MATH]Mathematics [math]010306 general physicsDispersion (water waves)PropagationNonlinear Schrödinger equationPhysics[PHYS]Physics [physics]Numerical AnalysisApplied MathematicsMathematical analysisInstability domains and gains[PHYS.MECA]Physics [physics]/Mechanics [physics]DispersionNonlinear systemModulational instabilityAmplitudeClassical mechanicsModeling and SimulationExtended nonlinear SchrodingersymbolsLattice model (physics)
researchProduct

Shear strength degradation due to flexural ductility demand in circular RC columns

2014

An analytical model was developed to estimate the shear-strength degradation and the residual capacity of circular reinforced concrete (RC) columns subjected to seismic action. The proposed model is an upgrade of a previously proposed model for axial force $$N$$ , bending moment $$M$$ and shear force $$V$$ ( $$N$$ – $$M$$ – $$V$$ ) interaction domain evaluation for rectangular and circular cross-section RC elements subjected to static loading. The model was extended to the case of circular cross-sections subjected to seismic actions with limitation of the range of variability of the deviation angle between the directions of the stress fields and the crack inclinations, as a function of the …

PierEngineeringRC circular cross-sectionbusiness.industryShear forceBuilding and ConstructionStructural engineeringGeotechnical Engineering and Engineering GeologyShear strength degradationStress (mechanics)Settore ICAR/09 - Tecnica Delle CostruzioniN–M–V domainGeophysicsAmplitudeFlexural strengthPlastic approachBending momentShear strengthRC circular cross-section; N–M–V domains; Plastic approach; Shear strength degradationbusinessDuctilityGeophysicCivil and Structural Engineering
researchProduct

Absence of correlation between oxysterol accumulation in lipid raft microdomains, calcium increase, and apoptosis induction on 158N murine oligodendr…

2013

There is some evidence that oxidized derivatives of cholesterol, 7-ketocholesterol (7KC) and 7β-hydroxycholesterol (7βOHC), are increased in the plasma of patients with neurodegenerative diseases associated with demyelinization of the central nervous system (CNS). It was therefore of interest to investigate the effects of these oxysterols on oligodendrocytes, the myelin-forming cells in the CNS. To this end, 158N murine oligodendrocytes were treated with 7KC or 7βOHC inducing an apoptotic mode of cell death characterized by condensation/fragmentation of the nuclei, dephosphorylation of Akt and GSK3, mitochondrial depolarization involving Mcl-1, and caspase-3 activation. In contrast, under t…

Programmed cell deathOxysterolCell Survivalalpha-TocopherolApoptosisBiologyBiochemistryCell Linechemistry.chemical_compoundGlycogen Synthase Kinase 3MiceMembrane MicrodomainsAnimalsFragmentation (cell biology)Protein kinase BLipid raftKetocholesterolsCell ProliferationPharmacologyDepolarizationHydroxycholesterolsCell biologyOligodendrogliaSterolschemistryProto-Oncogene Proteins c-bcl-2ApoptosisIonomycinMyeloid Cell Leukemia Sequence 1 Proteinlipids (amino acids peptides and proteins)CalciumProto-Oncogene Proteins c-aktBiochemical pharmacology
researchProduct

α-Tocopherol impairs 7-ketocholesterol-induced caspase-3-dependent apoptosis involving GSK-3 activation and Mcl-1 degradation on 158N murine oligoden…

2011

Abstract In important and severe neurodegenerative pathologies, 7-ketocholesterol, mainly resulting from cholesterol autoxidation, may contribute to dys- or demyelination processes. On various cell types, 7-ketocholesterol has often been shown to induce a complex mode of cell death by apoptosis associated with phospholipidosis. On 158N murine oligodendrocytes treated with 7-ketocholesterol (20 μg/mL corresponding to 50 μM, 24–48 h), the induction of a mode of cell death by apoptosis characterised by the occurrence of cells with condensed and/or fragmented nuclei, caspase activation (including caspase-3) and internucleosomal DNA fragmentation was observed. It was associated with a loss of tr…

Programmed cell deathTime FactorsCell Survivalalpha-TocopherolApoptosisCaspase 3BiochemistryDephosphorylationGlycogen Synthase Kinase 3MiceMembrane MicrodomainsGSK-3AnimalsKetocholesterolsMolecular BiologyProtein kinase BCell ProliferationMembrane Potential MitochondrialPhospholipidosisGlycogen Synthase Kinase 3 betaCaspase 3ChemistryOrganic ChemistryCytochromes cCell BiologyCell biologyEnzyme ActivationOligodendrogliaProtein TransportProto-Oncogene Proteins c-bcl-2ApoptosisMyeloid Cell Leukemia Sequence 1 ProteinDNA fragmentationChemistry and Physics of Lipids
researchProduct

The Role of Low Complexity Regions in Protein Interaction Modes: An Illustration in Huntingtin

2021

Low complexity regions (LCRs) are very frequent in protein sequences, generally having a lower propensity to form structured domains and tending to be much less evolutionarily conserved than globular domains. Their higher abundance in eukaryotes and in species with more cellular types agrees with a growing number of reports on their function in protein interactions regulated by post-translational modifications. LCRs facilitate the increase of regulatory and network complexity required with the emergence of organisms with more complex tissue distribution and development. Although the low conservation and structural flexibility of LCRs complicate their study, evolutionary studies of proteins …

Protein Conformation alpha-Helical0301 basic medicineNetwork complexityHuntingtinintrinsically disordered regionsAmino Acid MotifsComputational biologyBiologyprotein interactionsArticlecompositionally biased regionsCatalysisProtein–protein interactionlcsh:ChemistryEvolution MolecularInorganic ChemistryLow complexity03 medical and health sciencesProtein DomainsProtein Interaction MappingAnimalsHumansp300-CBP Transcription FactorsAmino Acid SequenceProtein Interaction MapsHuntingtinTissue distributionPhysical and Theoretical Chemistrylcsh:QH301-705.5Molecular BiologySpectroscopyHuntingtin Protein030102 biochemistry & molecular biologyOrganic ChemistryNuclear Proteinsp120 GTPase Activating ProteinGeneral MedicineMultiple modesSynapsinslow complexity regionsComputer Science ApplicationshomorepeatsMicroscopy Electron030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Sequence AlignmentFunction (biology)Protein BindingInternational Journal of Molecular Sciences
researchProduct

Kinetic analysis and molecular modeling of the inhibition mechanism of roneparstat (SST0001) on human heparanase

2016

Heparanase is a β-d-glucuronidase which cleaves heparan sulfate chains in the extracellular matrix and on cellular membranes. A dysregulated heparanase activity is intimately associated with cell invasion, tumor metastasis and angiogenesis, making heparanase an attractive target for the development of anticancer therapies. SST0001 (roneparstat; Sigma-Tau Research Switzerland S.A.) is a non-anticoagulant 100% N-acetylated and glycol-split heparin acting as a potent heparanase inhibitor, currently in phase I in advanced multiple myeloma. Herein, the kinetics of heparanase inhibition by roneparstat is reported. The analysis of dose-inhibition curves confirmed the high potency of roneparstat (I…

Protein Conformation alpha-Helical0301 basic medicineSST0001Molecular modelhomology modelingAmino Acid MotifsPlasma protein bindingMolecular Dynamics SimulationBiochemistryMolecular Docking SimulationheparanaseSubstrate Specificity03 medical and health scienceschemistry.chemical_compound0302 clinical medicinePolysaccharidesHumansProtein Interaction Domains and MotifsHeparanaseHomology modelingEnzyme InhibitorsGlucuronidaseBinding Siteskinetic inhibition analysisHeparinComputational BiologyHeparan sulfateRecombinant ProteinsAcidobacteriaMolecular Docking SimulationEnzyme bindingKinetics030104 developmental biologyCarbohydrate SequenceFondaparinuxchemistryBiochemistryStructural Homology ProteinDocking (molecular)030220 oncology & carcinogenesisBiophysicsroneparstatThermodynamicsProtein Conformation beta-StrandORIGINAL ARTICLESProtein BindingGlycobiology
researchProduct

A potential solution to avoid overdose of mixed drugs in the event of Covid-19: Nanomedicine at the heart of the Covid-19 pandemic.

2021

Since 2020, the world is facing the first global pandemic of 21st century. Among all the solutions proposed to treat this new strain of coronavirus, named SARS-CoV-2, the vaccine seems a promising way but the delays are too long to be implemented quickly. In the emergency, a dual therapy has shown its effectiveness but has also provoked a set of debates around the dangerousness of a particular molecule, hydroxychloroquine. In particular, the doses to be delivered, according to the studies, were well beyond the acceptable doses to support the treatment without side effects. We propose here to use all the advantages of nanovectorization to address this question of concentration. Using quantum…

Protein Conformation alpha-HelicalComputer science02 engineering and technologyAzithromycinDrug Delivery SystemsPandemicMaterials ChemistryDrug Dosage CalculationsSpectroscopymedia_common0303 health sciencesEvent (computing)021001 nanoscience & nanotechnologyComputer Graphics and Computer-Aided DesignMolecular Docking SimulationNanomedicineRisk analysis (engineering)Spike Glycoprotein CoronavirusDensity functional theory calculationsNanomedicineThermodynamicsNitrogen OxidesAngiotensin-Converting Enzyme 20210 nano-technologyHydroxychloroquineProtein BindingDrugBoron CompoundsCoronavirus disease 2019 (COVID-19)media_common.quotation_subjectSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)Molecular Dynamics SimulationAntiviral AgentsArticle03 medical and health sciencesHumansProtein Interaction Domains and MotifsDual therapyPhysical and Theoretical Chemistry030304 developmental biologyDrug transportBinding SitesSARS-CoV-2Molecular dynamics simulationsCOVID-19NanostructuresCOVID-19 Drug TreatmentKineticsQuantum TheoryProtein Conformation beta-StrandNanovectorizationJournal of molecular graphicsmodelling
researchProduct

Disentangling the complexity of low complexity proteins

2020

Abstract There are multiple definitions for low complexity regions (LCRs) in protein sequences, with all of them broadly considering LCRs as regions with fewer amino acid types compared to an average composition. Following this view, LCRs can also be defined as regions showing composition bias. In this critical review, we focus on the definition of sequence complexity of LCRs and their connection with structure. We present statistics and methodological approaches that measure low complexity (LC) and related sequence properties. Composition bias is often associated with LC and disorder, but repeats, while compositionally biased, might also induce ordered structures. We illustrate this dichot…

Protein ConformationComputer scienceReview ArticleComputational biologyMeasure (mathematics)Evolution MolecularLow complexity03 medical and health sciencesProtein DomainsAmino Acid Sequencestructure[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Databases ProteinMolecular Biology030304 developmental biologyStructure (mathematical logic)0303 health sciencesSequence[SCCO.NEUR]Cognitive science/Neurosciencecomposition bias030302 biochemistry & molecular biologyProteinsdisorderlow complexity regionsStructure and function[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]AlgorithmsInformation SystemsBriefings in Bioinformatics
researchProduct