Search results for "Data"
showing 10 items of 12992 documents
Recent Advances in Techniques for Hyperspectral Image Processing
2009
International audience; Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than thirty years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspec- tral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the high-dimensional nature of the data, and to integrate the spa- tial and spectral information. Performance of the discussed techniques is evaluated in …
Edge-Based Missing Data Imputation in Large-Scale Environments
2021
Smart cities leverage large amounts of data acquired in the urban environment in the context of decision support tools. These tools enable monitoring the environment to improve the quality of services offered to citizens. The increasing diffusion of personal Internet of things devices capable of sensing the physical environment allows for low-cost solutions to acquire a large amount of information within the urban environment. On the one hand, the use of mobile and intermittent sensors implies new scenarios of large-scale data analysis
Cloud detection on the Google Earth engine platform
2017
The vast amount of data acquired by current high resolution Earth observation satellites implies some technical challenges to be faced. Google Earth Engine (GEE) platform provides a framework for the development of algorithms and products built over this data in an easy and scalable manner. In this paper, we take advantage of the GEE platform capabilities to exploit the wealth of information in the temporal dimension by processing a long time series of satellite images. A cloud detection algorithm for Landsat-8, which uses previous images of the same location to detect clouds, is implemented and tested on the GEE platform.
Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples
2016
Abstract. Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squar…
Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging
2017
Made available in DSpace on 2018-12-11T17:11:58Z (GMT). No. of bitstreams: 0 Previous issue date: 2017-03-01 Suomen Akatemia Small unmanned aerial vehicle (UAV) based remote sensing is a rapidly evolving technology. Novel sensors and methods are entering the market, offering completely new possibilities to carry out remote sensing tasks. Three-dimensional (3D) hyperspectral remote sensing is a novel and powerful technology that has recently become available to small UAVs. This study investigated the performance of UAV-based photogrammetry and hyperspectral imaging in individual tree detection and tree species classification in boreal forests. Eleven test sites with 4151 reference trees repr…
Convolutional Neural Networks for Cloud Screening: Transfer Learning from Landsat-8 to Proba-V
2018
Cloud detection is a key issue for exploiting the information from Earth observation satellites multispectral sensors. For Proba-V, cloud detection is challenging due to the limited number of spectral bands. Advanced machine learning methods, such as convolutional neural networks (CNN), have shown to work well on this problem provided enough labeled data. However, simultaneous collocated information about the presence of clouds is usually not available or requires a great amount of manual labor. In this work, we propose to learn from the available Landsat −8 cloud masks datasets and transfer this learning to solve the Proba-V cloud detection problem. CNN are trained with Landsat images adap…
Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks
2020
Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were emp…
Efficient remote sensing image classification with Gaussian processes and Fourier features
2017
This paper presents an efficient methodology for approximating kernel functions in Gaussian process classification (GPC). Two models are introduced. We first include the standard random Fourier features (RFF) approximation into GPC, which largely improves the computational efficiency and permits large scale remote sensing data classification. In addition, we develop a novel approach which avoids randomly sampling a number of Fourier frequencies, and alternatively learns the optimal ones using a variational Bayes approach. The performance of the proposed methods is illustrated in complex problems of cloud detection from multispectral imagery.
Measuring, modelling and managing gully erosion at large scales: A state of the art
2018
Soil erosion is generally recognized as the dominant process of land degradation. The formation and expansion of gullies is often a highly significant process of soil erosion. However, our ability to assess and simulate gully erosion and its impacts remains very limited. This is especially so at regional to continental scales. As a result, gullying is often overlooked in policies and land and catchment management strategies. Nevertheless, significant progress has been made over the past decades. Based on a review of >590 scientific articles and policy documents, we provide a state-of-the-art on our ability to monitor, model and manage gully erosion at regional to continental scales. In this…
Comparison of gap-filling techniques applied to the CCI soil moisture database in Southern Europe
2021
Abstract Soil moisture (SM) is a key variable that plays an important role in land-atmosphere interactions. Monitoring SM is crucial for many applications and can help to determine the impact of climate change. Therefore, it is essential to have continuous and long-term databases for this variable. Satellite missions have contributed to this; however, the continuity of the series is compromised due to the data gaps derived by different factors, including revisit time, presence of seasonal ice or Radio Frequency Interference (RFI) contamination. In this work, the applicability of different gap-filling techniques is evaluated on the ESA Climate Change Initiative (CCI) SM combined product, whi…