Search results for "Diabatic"

showing 10 items of 303 documents

Uniform analytic description of dephasing effects in two-state transitions

2007

We describe the effect of pure dephasing upon the time-dependent dynamics of two-state quantum systems in the framework of a Lindblad equation for the time evolution of the density matrix. A uniform approximate formula is derived, which modifies the corresponding lossless transition probability by an exponential factor containing the dephasing rate and the interaction parameters. This formula is asymptotically exact in both the diabatic and adiabatic limits; comparison with numerical results shows that it is highly accurate also in the intermediate range. Several two-state models are considered in more detail, including the Landau-Zener, Rosen-Zener, Allen-Eberly, and Demkov-Kunike models, …

Condensed Matter::Quantum GasesPhysicsDensity matrixQuantum decoherenceLindblad equationDephasingDiabaticTime evolutionCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasSchrödinger equationsymbols.namesakeQuantum mechanics0103 physical sciencessymbols010306 general physicsAdiabatic processPhysical Review A
researchProduct

Theory of warm ionized gases: Equation of state and kinetic Schottky anomaly

2013

Based on accurate Lennard-Jones type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analogue in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed. In particular, the predicted plasma electron density in a sonoluminescent bubble turns out to be in good agreement with the value measured in recent experiment…

Condensed Matter::Quantum GasesPhysicsEquation of stateBubbleFOS: Physical sciencesKinetic energy01 natural sciences7. Clean energyHeat capacityPhysics - Plasma Physicssingle-bubble sonoluminescence ; plasma ; cavitationCondensed Matter - Other Condensed MatterPlasma Physics (physics.plasm-ph)SonoluminescenceIonization0103 physical sciencesPhysics::Atomic and Molecular ClustersAtomic physics010306 general physicsAdiabatic process010303 astronomy & astrophysicsSchottky anomalyOther Condensed Matter (cond-mat.other)Physical Review E
researchProduct

Generation of multiphoton Fock states by bichromatic adiabatic passage: Topological analysis

2004

We propose a robust scheme to generate multi-photon Fock states in an atom-maser-cavity system using adiabatic passage techniques and topological properties of the dressed eigenenergy surfaces. The mechanism is an exchange of photons from the maser field into the initially empty cavity by bichromatic adiabatic passage. The number of exchanged photons depends on the design of the adiabatic dynamics through and around the conical intersections of dressed eigenenergy surfaces.

Condensed Matter::Quantum GasesPhysicsQuantum PhysicsPhoton[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]Field (physics)Cavity quantum electrodynamicsFOS: Physical sciencesPhysics::OpticsConical surfaceTopologyAtomic and Molecular Physics and Opticslaw.inventionFock spacelawQuantum mechanicsPhysics::Atomic PhysicsMaserQuantum Physics (quant-ph)Adiabatic processTopology (chemistry)Physical Review A
researchProduct

ADIABATIC COOLING OF IONS IN THE PENNING TRAP

1991

An ion cloud in a Penning trap can be cooled by adiabatic expansion by reducing the trap's magnetic and electric fields. We treat the ion cloud as a classical gas and obtain the relations between the temperature and the trapping fields. This cooling method may be useful in trapping and cooling of antiprotons with the aim of measuring the gravitational accleration of anti-protons and other experiments on heavy ions.

Condensed Matter::Quantum GasesPhysicsTrappingPenning trapAtomic and Molecular Physics and OpticsIonMagnetic trapElectric fieldPhysics::Atomic PhysicsIon trapAtomic physicsNuclear ExperimentAdiabatic processDoppler cooling
researchProduct

Towards the origin of the shear force in near-field microscopy

2001

The shear force from a gold or a graphite sample acting on an approaching near-field optical probe is studied in detail. The adiabatic and dissipative contributions to the force are clearly distinguished by monitoring the amplitude as well as the phase of the tip vibration when the tip approaches the surfaces. We also take into account that not only the damping and the resonance frequency but also the mass of the system changes when the tip approaches the surface. The relative strength of the contributions to the force varies differently but characteristically with the distance of the two samples, starting at a much larger distance in the case of graphite. The adiabatic contribution is lar…

Condensed matter physicsbusiness.industryChemistryElectrostatic force microscopeShear forceGeneral EngineeringGeneral Physics and AstronomyAtomic force acoustic microscopyConductive atomic force microscopyOpticsAmplitudeNear-field scanning optical microscopeAdiabatic processbusinessNon-contact atomic force microscopy
researchProduct

Observed and Simulated Variability of Droplet Spectral Dispersion in Convective Clouds Over the Amazon

2021

In this study, the variability of the spectral dispersion of droplet size distributions (DSDs) in convective clouds is investigated. Analyses are based on aircraft measurements of growing cumuli near the Amazon basin, and on numerical simulations of an idealized ice‐free cumulus. In cleaner clouds, the relative dispersion ϵ, defined as the ratio of the standard deviation to the mean value of the droplet diameter, is negatively correlated with the ratio of the cloud water content (qc) to the adiabatic liquid water content (qa), while no strong correlation between ϵ and qc/qa is seen in polluted clouds. Bin microphysics numerical simulations suggest that these contrasting behaviors are associ…

ConvectionAtmospheric ScienceAmazon rainforestaerosolcloudsSpectral dispersionMICROFÍSICA DE NUVENSAtmospheric sciencesdroplet spectumStandard deviationGeophysicsddc:551.5Space and Planetary ScienceLiquid water contentEarth and Planetary Sciences (miscellaneous)Environmental sciencedispersionAdiabatic processDroplet sizeWater contentPhysics::Atmospheric and Oceanic Physics
researchProduct

Cloud droplet formation at the base of tropical convective clouds: closure between modeling and measurement results of ACRIDICON–CHUVA

2021

Aerosol–cloud interactions contribute to the large uncertainties in current estimates of climate forcing. We investigated the effect of aerosol particles on cloud droplet formation by model calculations and aircraft measurements over the Amazon and over the western tropical Atlantic during the ACRIDICON–CHUVA campaign in September 2014. On the HALO (High Altitude Long Range Research) research aircraft, cloud droplet number concentrations (Nd) were measured near the base of clean and polluted growing convective cumuli using a cloud combination probe (CCP) and a cloud and aerosol spectrometer (CAS-DPOL). An adiabatic parcel model was used to perform cloud droplet number closure studies for fl…

ConvectionAtmospheric ScienceRange (particle radiation)010504 meteorology & atmospheric sciencesSpectrometerPhysicsQC1-999Radiative forcingTropical Atlantic010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencesCondensation particle counterAerosolChemistry13. Climate actionComputer Science::Programming LanguagesEnvironmental science[CHIM]Chemical Sciences14. Life underwaterAdiabatic processQD1-999Physics::Atmospheric and Oceanic Physics0105 earth and related environmental sciences
researchProduct

Comparing parameterized versus measured microphysical properties of tropical convective cloud bases during the ACRIDICON–CHUVA campaign

2017

The objective of this study is to validate parameterizations that were recently developed for satellite retrievals of cloud condensation nuclei supersaturation spectra, NCCN(S), at cloud base alongside more traditional parameterizations connecting NCCN(S) with cloud base updrafts and drop concentrations. This was based on the HALO aircraft measurements during the ACRIDICON–CHUVA campaign over the Amazon region, which took place in September 2014. The properties of convective clouds were measured with a cloud combination probe (CCP), a cloud and aerosol spectrometer (CAS-DPOL), and a CCN counter onboard the HALO aircraft. An intercomparison of the cloud drop size distributions (DSDs) and the…

ConvectionAtmospheric Sciencecould condenstion nuclei010504 meteorology & atmospheric sciencesMeteorologysupersaturationCloud computing010502 geochemistry & geophysicsAtmospheric sciences01 natural scienceslcsh:ChemistryCloud baseCloud condensation nucleicloudWolkenphysikAdiabatic processupdraftAstrophysics::Galaxy AstrophysicsPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesbusiness.industryDrop (liquid)CASlcsh:QC1-999Aerosollcsh:QD1-999Environmental scienceHalobusinesslcsh:Physics
researchProduct

Numerical investigation of thermomagnetic convection in a heated cylinder under the magnetic field of a solenoid

2011

The main objective of this paper is the numerical investigation of the process of thermomagnetic convection of a special temperature sensitive ferrofluid. The fluid is studied in a cylindrical domain, with constant temperatures on the top and bottom ends and adiabatic boundary conditions on the sidewalls. The thermomagnetic convection is generated by a non-uniform constant magnetic field of a solenoid, which is placed in a hollow area inside the domain. It has been found that the efficiency of convective heat transfer in such a set-up can be increased up to sevenfold by magnetic field within the studied range of parameters.

ConvectionFerrofluidConvective heat transferChemistryThermodynamicsSolenoidThermomagnetic convectionMechanicsCondensed Matter PhysicsMagnetic fieldPhysics::Fluid DynamicsHeat transferGeneral Materials ScienceAdiabatic processJournal of Physics: Condensed Matter
researchProduct

Viscous dissipation and thermoconvective instabilities in a horizontal porous channel heated from below

2010

Accepted version of av article from the journal: International Journal of Thermal Sciences. Published version available on Science Direct: http://dx.doi.org/10.1016/j.ijthermalsci.2009.10.010 A linear stability analysis of the basic uniform flow in a horizontal porous channel with a rectangular cross section is carried out. The thermal boundary conditions at the impermeable channel walls are: uniform incoming heat flux at the bottom wall, uniform temperature at the top wall, adiabatic lateral walls. Thermoconvective instabilities are caused by the incoming heat flux at the bottom wall and by the internal viscous heating. Linear stability against transverse or longitudinal roll disturbances …

ConvectionVDP::Mathematics and natural science: 400::Mathematics: 410::Applied mathematics: 413Darcy's lawMaterials scienceLINEAR STABILITYGeneral EngineeringThermodynamicsMechanicsCondensed Matter PhysicsInstabilityVISCOUS DISSIPATIONPhysics::Fluid DynamicsHeat fluxPOROUS MEDIUMCONVECTIVE ROLLSHeat transferPotential flowVDP::Technology: 500::Materials science and engineering: 520Adiabatic processDARCY'S LAWLinear stability
researchProduct