Search results for "Differential geometry"

showing 10 items of 462 documents

L2-torsion of hyperbolic manifolds

1998

The L^2-torsion is an invariant defined for compact L^2-acyclic manifolds of determinant class, for example odd dimensional hyperbolic manifolds. It was introduced by John Lott and Varghese Mathai and computed for hyperbolic manifolds in low dimensions. In this paper we show that the L^2-torsion of hyperbolic manifolds of arbitrary odd dimension does not vanish. This was conjectured by J. Lott and W. Lueck. Some concrete values are computed and an estimate of their growth with the dimension is given.

Mathematics - Differential GeometryPure mathematicsConjectureGeneral MathematicsAlgebraic geometryMathematics::Geometric TopologyNumber theoryDifferential Geometry (math.DG)Mathematics::K-Theory and Homology58G11 (primary) 58G26 (secondary)FOS: MathematicsTorsion (algebra)Mathematics::Metric GeometryMathematics::Differential GeometryMathematics::Symplectic GeometryMathematics
researchProduct

Wolfe's theorem for weakly differentiable cochains

2014

Abstract A fundamental theorem of Wolfe isometrically identifies the space of flat differential forms of dimension m in R n with the space of flat m -cochains, that is, the dual space of flat chains of dimension m in R n . The main purpose of the present paper is to generalize Wolfe's theorem to the setting of Sobolev differential forms and Sobolev cochains in R n . A suitable theory of Sobolev cochains has recently been initiated by the second and third author. It is based on the concept of upper norm and upper gradient of a cochain, introduced in analogy with Heinonen–Koskela's concept of upper gradient of a function.

Mathematics - Differential GeometryPure mathematicsDifferential form49Q15 46E35 53C65 49J52Mathematics::Algebraic Topology01 natural sciencesMathematics - Analysis of PDEs0103 physical sciencesFOS: MathematicsDifferentiable function0101 mathematicsflat cochainMathematicsFundamental theoremDual spaceta111polyhedral chain010102 general mathematicsCohomologySobolev spaceDifferential Geometry (math.DG)Norm (mathematics)010307 mathematical physicsgeometric integration theoryweakly differentiable cochainAnalysisAnalysis of PDEs (math.AP)
researchProduct

A rigidity problem on the round sphere

2015

We consider a class of overdetermined problems in rotationally symmetric spaces, which reduce to the classical Serrin's overdetermined problem in the case of the Euclidean space. We prove some general integral identities for rotationally symmetric spaces which imply a rigidity result in the case of the round sphere.

Mathematics - Differential GeometryPure mathematicsEuclidean spaceApplied MathematicsGeneral Mathematics010102 general mathematicsMathematics::Analysis of PDEsComputer Science::Numerical Analysis01 natural sciencesOverdetermined systemrotationally symmetric spaceMathematics - Analysis of PDEsRigidity (electromagnetism)rigidityDifferential Geometry (math.DG)Settore MAT/05 - Analisi Matematica0103 physical sciencesRound sphereFOS: MathematicsPrimary 35R01 35N25 Secondary: 53C24 58J05Overdetermined PDE010307 mathematical physics0101 mathematicsAnalysis of PDEs (math.AP)Mathematics
researchProduct

Sets with constant normal in Carnot groups: properties and examples

2019

We analyze subsets of Carnot groups that have intrinsic constant normal, as they appear in the blowup study of sets that have finite sub-Riemannian perimeter. The purpose of this paper is threefold. First, we prove some mild regularity and structural results in arbitrary Carnot groups. Namely, we show that for every constant-normal set in a Carnot group its sub-Riemannian-Lebesgue representative is regularly open, contractible, and its topological boundary coincides with the reduced boundary and with the measure-theoretic boundary. We infer these properties from a cone property. Such a cone will be a semisubgroup with nonempty interior that is canonically associated with the normal directio…

Mathematics - Differential GeometryPure mathematicsGeneral MathematicsBoundary (topology)Group Theory (math.GR)Characterization (mathematics)01 natural sciencesContractible spacesymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric GeometryFOS: MathematicsMathematics::Metric Geometry0101 mathematicsMathematicsGroup (mathematics)010102 general mathematicsCarnot groupMetric Geometry (math.MG)53C17 22E25 28A75 49N60 49Q15 53C38Differential Geometry (math.DG)Cone (topology)symbolsCarnot cycleConstant (mathematics)Mathematics - Group TheoryAnalysis of PDEs (math.AP)Commentarii Mathematici Helvetici
researchProduct

Counting and equidistribution in Heisenberg groups

2014

We strongly develop the relationship between complex hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on complex hyperbolic spaces, especially in dimension $2$. We prove a Mertens' formula for the integer points over a quadratic imaginary number fields $K$ in the light cone of Hermitian forms, as well as an equidistribution theorem of the set of rational points over $K$ in Heisenberg groups. We give a counting formula for the cubic points over $K$ in the complex projective plane whose Galois conjugates are orthogonal and isotropic for a given Hermitian form over $K$, and a counting and equidistribution result for …

Mathematics - Differential GeometryPure mathematicsGeneral MathematicsHyperbolic geometryMathematics::Number Theory[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]11E39 11F06 11N45 20G20 53C17 53C22 53C55chainEquidistribution theorem01 natural sciencesHeisenberg groupequidistributioncommon perpendicularIntegerLight cone0103 physical sciencesHeisenberg groupcubic point0101 mathematicsCygan distanceMertens formulaComplex projective planeMathematicsDiscrete mathematicsAMS codes: 11E39 11F06 11N45 20G20 53C17 53C22 53C55Mathematics - Number TheorySesquilinear formHeisenberg groups010102 general mathematicsHermitian matrixcomplex hyperbolic geometry[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]sub-Riemannian geometry[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]counting010307 mathematical physics
researchProduct

Harnack estimates for degenerate parabolic equations modeled on the subelliptic $p-$Laplacian

2014

Abstract We establish a Harnack inequality for a class of quasi-linear PDE modeled on the prototype ∂ t u = − ∑ i = 1 m X i ⁎ ( | X u | p − 2 X i u ) where p ⩾ 2 , X = ( X 1 , … , X m ) is a system of Lipschitz vector fields defined on a smooth manifold M endowed with a Borel measure μ, and X i ⁎ denotes the adjoint of X i with respect to μ. Our estimates are derived assuming that (i) the control distance d generated by X induces the same topology on M ; (ii) a doubling condition for the μ-measure of d-metric balls; and (iii) the validity of a Poincare inequality involving X and μ. Our results extend the recent work in [16] , [36] , to a more general setting including the model cases of (1)…

Mathematics - Differential GeometryPure mathematicsGeneral MathematicsMathematics::Analysis of PDEsPoincaré inequalityVolume formsymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric GeometryFOS: MathematicsP-LAPLACIAN OPERATORBorel measureRicci curvatureMathematicsHarnack's inequalityMatematikLebesgue measureta111HORMANDER VECTOR FIELDSMetric Geometry (math.MG)Lipschitz continuity35H20Differential Geometry (math.DG)p-LaplaciansymbolsHARNACK INEQUALITYMathematicsAnalysis of PDEs (math.AP)
researchProduct

Euclidean spaces as weak tangents of infinitesimally Hilbertian metric spaces with Ricci curvature bounded below

2013

We show that in any infinitesimally Hilbertian CD* (K,N)-space at almost every point there exists a Euclidean weak tangent, i.e., there exists a sequence of dilations of the space that converges to Euclidean space in the pointed measured Gromov-Hausdorff topology. The proof follows by considering iterated tangents and the splitting theorem for infinitesimally Hilbertian CD* (0,N)-spaces.

Mathematics - Differential GeometryPure mathematicsGeneral MathematicsSpace (mathematics)01 natural sciencesMeasure (mathematics)Mathematics - Metric Geometry0103 physical sciencesFOS: MathematicsMathematics::Metric Geometry0101 mathematics[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]tangent spaces; non-smooth geometryRicci curvatureMathematics51F99-53B99non-smooth geometrySequenceEuclidean spaceApplied MathematicsHilbertian spaces010102 general mathematicstangent spacesTangentMetric Geometry (math.MG)Euclidean spacesDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]weak tangentsBounded functionSplitting theorem010307 mathematical physics
researchProduct

Tensor tomography on Cartan–Hadamard manifolds

2017

We study the geodesic X-ray transform on Cartan-Hadamard manifolds, and prove solenoidal injectivity of this transform acting on functions and tensor fields of any order. The functions are assumed to be exponentially decaying if the sectional curvature is bounded, and polynomially decaying if the sectional curvature decays at infinity. This work extends the results of Lehtonen (2016) to dimensions $n \geq 3$ and to the case of tensor fields of any order.

Mathematics - Differential GeometryPure mathematicsGeodesic01 natural sciencesTheoretical Computer ScienceTensor fieldHadamard transform44A12 53C21 53C22 45Q05Euclidean geometryFOS: MathematicsSectional curvatureTensor0101 mathematicsMathematical PhysicsMathematicsCartan-Hadamard manifoldsSolenoidal vector fieldApplied Mathematics010102 general mathematicsComputer Science Applications010101 applied mathematicsDifferential Geometry (math.DG)Bounded functionSignal Processingtensor tomographyMathematics::Differential GeometryInverse Problems
researchProduct

X-ray transforms in pseudo-Riemannian geometry

2016

We study the problem of recovering a function on a pseudo-Riemannian manifold from its integrals over all null geodesics in three geometries: pseudo-Riemannian products of Riemannian manifolds, Minkowski spaces and tori. We give proofs of uniqueness anc characterize non-uniqueness in different settings. Reconstruction is sometimes possible if the signature $(n_1,n_2)$ satisfies $n_1\geq1$ and $n_2\geq2$ or vice versa and always when $n_1,n_2\geq2$. The proofs are based on a Pestov identity adapted to null geodesics (product manifolds) and Fourier analysis (other geometries). The problem in a Minkowski space of any signature is a special case of recovering a function in a Euclidean space fro…

Mathematics - Differential GeometryPure mathematicsGeodesic44A12 53C50 11D09Riemannian geometry01 natural sciencespseudo-Riemannian manifoldsinversio-ongelmatsymbols.namesakeray transformsMathematics - Analysis of PDEsMinkowski spaceFOS: Mathematics0101 mathematicsMathematicsEuclidean space010102 general mathematicsNull (mathematics)Manifold010101 applied mathematicsnull geodesicsDifferential Geometry (math.DG)Differential geometryProduct (mathematics)symbolsGeometry and TopologyMathematics::Differential GeometryAnalysis of PDEs (math.AP)
researchProduct

Slopes of Kantorovich potentials and existence of optimal transport maps in metric measure spaces

2014

We study optimal transportation with the quadratic cost function in geodesic metric spaces satisfying suitable non-branching assumptions. We introduce and study the notions of slope along curves and along geodesics and we apply the latter to prove suitable generalizations of Brenier's theorem of existence of optimal maps.

Mathematics - Differential GeometryPure mathematicsGeodesicApplied MathematicsInjective metric spacenon-brancingMathematical analysis49Q20 53C23Metric Geometry (math.MG)Measure (mathematics)geodesic metric spaceConvex metric spaceIntrinsic metricMetric spaceMathematics - Metric GeometryDifferential Geometry (math.DG)Metric (mathematics)FOS: Mathematicsupper gradientMetric mapoptimal transportationMathematics
researchProduct