Search results for "Digital Libraries"

showing 10 items of 152 documents

Issues and Opportunities in Exotic Hadrons

2016

The last few years have been witness to a proliferation of new results concerning heavy exotic hadrons. Experimentally, many new signals have been discovered that could be pointing towards the existence of tetraquarks, pentaquarks, and other exotic configurations of quarks and gluons. Theoretically, advances in lattice field theory techniques place us at the cusp of understanding complex coupled-channel phenomena, modelling grows more sophisticated, and effective field theories are being applied to an ever greater range of situations. It is thus an opportune time to evaluate the status of the field. In the following, a series of high priority experimental and theoretical issues concerning h…

Nuclear and High Energy PhysicsParticle physicsField (physics)Lattice field theoryhep-latFOS: Physical sciencesAtomic01 natural sciencesComputer Science::Digital Libraries530Particle and Plasma PhysicsHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNuclearddc:530010306 general physicsNuclear ExperimentInstrumentationPhysics010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]High Energy Physics::PhenomenologyHigh Energy Physics - Lattice (hep-lat)Molecularhep-phAstronomy and AstrophysicsExotic hadronNuclear & Particles PhysicsHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Quark–gluon plasmaHigh Energy Physics::Experiment
researchProduct

Probes of the Standard Model effective field theory extended with a right-handed neutrino

2019

If neutrinos are Dirac particles and, as suggested by the so far null LHC results, any new physics lies at energies well above the electroweak scale, the Standard Model effective field theory has to be extended with operators involving the right-handed neutrinos. In this paper, we study this effective field theory and set constraints on the different dimension-six interactions. To that aim, we use LHC searches for associated production of light (and tau) leptons with missing energy, monojet searches, as well as pion and tau decays. Our bounds are generally above the TeV for order one couplings. One particular exception is given by operators involving top quarks. These provide new signals in…

Nuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard ModelFOS: Physical sciencesComputer Science::Digital Libraries01 natural sciencesHigh Energy Physics - ExperimentStandard ModelHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesEffective field theoryNeutrino Physicslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsPhysicsLarge Hadron ColliderMissing energy010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyEffective Field TheoriesNeutrino physicsHigh Energy Physics - PhenomenologyBeyond Standard ModelComputer Science::Mathematical Softwarelcsh:QC770-798High Energy Physics::ExperimentNeutrinoElectroweak scaleLeptonJournal of High Energy Physics
researchProduct

Light sterile neutrino sensitivity at the nuSTORM facility

2014

A facility that can deliver beams of electron and muon neutrinos from the decay of a stored muon beam has the potential to unambiguously resolve the issue of the evidence for light sterile neutrinos that arises in short-baseline neutrino oscillation experiments and from estimates of the effective number of neutrino flavors from fits to cosmological data. In this paper, we show that the nuSTORM facility, with stored muons of 3.8 GeV/c $\pm$ 10%, will be able to carry out a conclusive muon neutrino appearance search for sterile neutrinos and test the LSND and MiniBooNE experimental signals with 10$\sigma$ sensitivity, even assuming conservative estimates for the systematic uncertainties. This…

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy & AstrophysicsComputer Science::Digital LibrariesPartícules (Física nuclear)High Energy Physics - ExperimentMiniBooNENuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0201 Astronomical and Space SciencesTOOLKITNeutrino oscillationDETECTOR0206 Quantum PhysicsPhysicsGALLEXScience & Technologyhep-exPhysicsPHYSICS PARTICLES & FIELDSHigh Energy Physics::Phenomenologyhep-phSolar neutrino problemNuclear & Particles PhysicsCosmic neutrino backgroundHigh Energy Physics - PhenomenologyNeutrino detectorPhysical Sciences0202 Atomic Molecular Nuclear Particle and Plasma PhysicsComputer Science::Mathematical SoftwareMeasurements of neutrino speedPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentNeutrinoParticle Physics - Experiment
researchProduct

Isospin-symmetry breaking in masses of ≃ Nuclei

2018

Effects of the isospin-symmetry breaking (ISB) beyond mean-field Coulomb terms are systematically studied in nuclear masses near the N=Z line. The Coulomb exchange contributions are calculated exactly. We use extended Skyrme energy density functionals (EDFs) with proton–neutron-mixed densities, to which we add new terms breaking the isospin symmetry. Two parameters associated with the new terms are determined by fitting mirror and triplet displacement energies (MDEs and TDEs) of isospin multiplets. The new EDFs reproduce MDEs for the T=12 doublets and T=1 triplets, and TDEs for the T=1 triplets. Relative strengths of the obtained isospin-symmetry-breaking terms are not consistent with the d…

Nuclear and High Energy PhysicsParticle physicsprotonitNuclear TheoryTriplet displacement energy (TDE)01 natural sciencesComputer Science::Digital LibrariesDisplacement (vector)Energy density functional (EDF)Proton–neutron mixingproton–neutron mixingnuclear physicstiheysmirror displacement energy (MDE)0103 physical sciencesCoulombSymmetry breaking010306 general physicsnuclear density functional theory (DFT)density functional theoryLine (formation)Physicsdensityenergiata114protons010308 nuclear & particles physicsScatteringtiheysfunktionaaliteorianeutronsneutronitenergy density functional (EDF)lcsh:QC1-999Symmetry (physics)Isospin symmetry breaking (ISB)Isospintriplet displacement energy (TDE)isospin symmetry breaking (ISB)ydinfysiikkaMirror displacement energy (MDE)Parametrizationlcsh:PhysicsenergyPhysics Letters
researchProduct

Benchmark of a multi-physics Monte Carlo simulation of an ionguide for neutron-induced fission products

2022

AbstractTo enhance the production of medium-heavy, neutron-rich nuclei, and to facilitate measurements of independent yields of neutron-induced fission, a proton-to-neutron converter and a dedicated ion guide for neutron-induced fission have been developed for the IGISOL facility at the University of Jyväskylä. The ion guide holds the fissionable targets, and the fission products emerging from the targets are collected in helium gas and transported to the downstream experimental stations. A computer model, based on a combination of MCNPX for modeling the neutron production, the fission code GEF, and GEANT4 for the transport of the fission products, was developed. The model will be used to i…

Nuclear and High Energy PhysicstutkimuslaitteetNuclear Theorygamma-spectroscopyFission productsComputer Science::Digital LibrariesSubatomär fysikfissioMonte Carlo -menetelmätSubatomic PhysicsPhysics::Atomic and Molecular ClusterssimulointiGEFydinfysiikkaNuclear ExperimentMCNPXGEANT4
researchProduct

Kinetic Interaction of Cold and Hot Protons With an Oblique EMIC Wave Near the Dayside Reconnecting Magnetopause

2021

STR acknowledges support from the ISSI international team Cold plasma of ionospheric origin in the Earth's magnetosphere and of the Ministry of Economy and Competitiveness (MINECO) of Spain (grant FIS2017-90102-R). Research at IRAP was supported by CNRS, CNES and the University of Toulouse. JHL and DLT acknowledge support from NASA Grant 80NSSC18K1378. RED was supported by NASA grants 80NSSC19K070 and 80NSSC19K0254. MA was supported by SNSA Grant 56/18. SKV and RCA acknowledge support from NASA Grant 80NSSC19K0270. Work performed by MMS team members is supported by NASA contract NNG04EB99C.

Ones010504 meteorology & atmospheric sciences[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP]oblique propagationMagnetospherewave-particle interactionPlasma (Gasos ionitzats)010502 geochemistry & geophysicsKinetic energy01 natural sciences7. Clean energyComputer Science::Digital LibrariesFusion plasma och rymdfysikPhysics::Plasma PhysicsNuclear ExperimentComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesPhysicselectromagnetic ion cyclotronGeofysikmagnetopauseAstronomyOblique caseGeofísicaFusion Plasma and Space PhysicsGeophysics13. Climate action[SDU]Sciences of the Universe [physics]Physics::Space PhysicsGeneral Earth and Planetary SciencesEmic and eticMagnetopausecold ionsChristian ministryAstrophysics::Earth and Planetary AstrophysicsIonospheremulti-ion plasma
researchProduct

A Precise Measurement of the $\tau$ Polarisation at LEP-1

2000

The $\tau$ polarisation has been studied with the ${\rm e^+e^-}\to \tau^+\tau^-$ data collected by the DELPHI detector at LEP in 1993, 1994 and 1995 around the Z resonance firstly through the exclusive decay channels ${\rm e}\nu\bar{\nu}$ , $\mu\nu\bar{\nu}$ , $\pi\nu$ , $\rho\nu$ and ${\rm a}_1\nu$ and secondly with an inclusive hadronic analysis which benefits from a higher efficiency and a better systematic precision. The results have been combined with those previously published on 1990 to 1992 DELPHI data, to produce results which reflect the full LEP-1 statistics. The fit of the $\tau$ polarisation dependence on the production angle yielded the polarisation parameters ${\cal A}_{_{\sc…

Particle physicsCOLLISIONSscientific informationPOLARIZATIONPhysics and Astronomy (miscellaneous)LUND MONTE-CARLOENERGIESElectron–positron annihilationHadron01 natural sciencesComputer Science::Digital LibrariesDECAYSPartícules (Física nuclear)informationPHYSICSNEUTRINO HELICITYBHABHA SCATTERINGOpen Access0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RADIATIVE-CORRECTIONSComputer Science::Symbolic Computation010306 general physicsEngineering (miscellaneous)LUND MONTE-CARLO; NEUTRINO HELICITY; MICHEL PARAMETERS; RADIATIVE-CORRECTIONS; BHABHA SCATTERING; DECAYS; POLARIZATION; PHYSICS; COLLISIONS; ENERGIESBhabha scatteringDELPHIPhysics010308 nuclear & particles physicscommunicationPhysicsHigh Energy Physics::PhenomenologyepistemologyWeinberg angleMICHEL PARAMETERSPolarization (waves)LARGE ELECTRON POSITRON COLLIDERPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIMichel parametersPARTICLE PHYSICSAngular dependenceFísica nuclearHigh Energy Physics::ExperimentParticle Physics - ExperimentOpen Society InstituteLepton
researchProduct

How to discover QCD Instantons at the LHC

2020

Topological Effects in the Standard Model: Instantons, Sphalerons and Beyond at LHC, Geneva, Switzerland, 16 Dec 2020 - 18 Dec 2020; The European physical journal / C 81(7), 624 (2021). doi:10.1140/epjc/s10052-021-09412-1

Particle physicsInstantonp p: scatteringPhysics and Astronomy (miscellaneous)High Energy Physics::LatticeFOS: Physical sciencesquantum [tunneling]QC770-798AstrophysicsComputer Science::Digital Libraries01 natural sciences530Standard Modelvacuum statetopologicalHigh Energy Physics::TheoryCross section (physics)High Energy Physics - Phenomenology (hep-ph)Nuclear and particle physics. Atomic energy. Radioactivityasymmetry [baryon]0103 physical sciencesscattering [p p]ddc:530quantum chromodynamics: instantonLimit (mathematics)010306 general physicsEngineering (miscellaneous)Quantum tunnellingtunneling: quantumQuantum chromodynamicsPhysicsLarge Hadron Colliderelectroweak interaction010308 nuclear & particles physicsHigh Energy Physics::Phenomenologysymmetry breaking: chiralQB460-466High Energy Physics - PhenomenologyCERN LHC Collinstanton [quantum chromodynamics]confinementbaryon: asymmetryComputer Science::Mathematical Softwarechiral [symmetry breaking]Non-perturbativesignature
researchProduct

Elliptic flow and $$R_{AA}$$ of $$\text {D}$$ mesons at FAIR comparing the UrQMD hybrid model and the coarse-graining approach

2019

The European physical journal / C Particles and fields C 79(1), 52 (2019). doi:10.1140/epjc/s10052-019-6537-6

Particle physicsNuclear TheoryPhysics and Astronomy (miscellaneous)MesonNuclear TheoryHadronFOS: Physical scienceslcsh:Astrophysicshiukkasfysiikka530Computer Science::Digital Libraries01 natural sciencesHigh Energy Physics - ExperimentCharm quarkNuclear Theory (nucl-th)High Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)D mesonslcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530Charm (quantum number)Nuclear Experiment010306 general physicsLangevin dynamicsEngineering (miscellaneous)Physics010308 nuclear & particles physicsEquation of state (cosmology)elliptic flowHigh Energy Physics::PhenomenologyElliptic flowHadronizationHigh Energy Physics - Phenomenologylcsh:QC770-798High Energy Physics::ExperimentThe European Physical Journal C
researchProduct

Bottom-up approach within the electroweak effective theory: Constraining heavy resonances

2020

The LHC has confirmed the existence of a mass gap between the known particles and possible new states. Effective field theory is then the appropriate tool to search for low-energy signals of physics beyond the Standard Model. We adopt the general formalism of the electroweak effective theory, with a non-linear realization of the electroweak symmetry breaking, where the Higgs is a singlet with independent couplings. At higher energies we consider a generic resonance Lagrangian which follows the above-mentioned non-linear realization and couples the light particles to bosonic heavy resonances with $J^P=0^\pm$ and $J^P=1^\pm$. Integrating out the resonances and assuming a proper short-distance…

Particle physicsPhotonPhysics beyond the Standard ModelFOS: Physical sciencesMateria - Propiedades.01 natural sciencesColisiones (Física nuclear)Computer Science::Digital LibrariesHigh Energy Physics - Phenomenology (hep-ph)Collisions (Nuclear physics)0103 physical sciencesEffective field theoryPartículas (Física nuclear)Symmetry breakingElectromagnetismo010306 general physicsParticles (Nuclear physics)PhysicsMatter - Properties.010308 nuclear & particles physicsElectroweak interactionHigh Energy Physics::PhenomenologyResonanceHigh Energy Physics - PhenomenologyHiggs bosonMass gapPhysical Review
researchProduct