Search results for "Dimensionality Reduction"

showing 10 items of 120 documents

Feature Dimensionality Reduction for Mammographic Report Classification

2016

The amount and the variety of available medical data coming from multiple and heterogeneous sources can inhibit analysis, manual interpretation, and use of simple data management applications. In this paper a deep overview of the principal algorithms for dimensionality reduction is carried out; moreover, the most effective techniques are applied on a dataset composed of 4461 mammographic reports is presented. The most useful medical terms are converted and represented using a TF-IDF matrix, in order to enable data mining and retrieval tasks. A series of query have been performed on the raw matrix and on the same matrix after the dimensionality reduction obtained using the most useful techni…

Computer scienceLatent semantic analysisbusiness.industryDimensionality reductionData managementCosine similarityPattern recognitionLatent Semantic Analysis (LSA)02 engineering and technologySingular Value Decomposition (SVD)Medical Application03 medical and health sciencesMatrix (mathematics)0302 clinical medicineFeature Dimensionality ReductionFeature (computer vision)Singular value decompositionPrincipal component analysis0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processing030212 general & internal medicineArtificial intelligencebusinessPrincipal Component Analysis (PCA)
researchProduct

Quantitative evaluation of muscle synergy models: a single-trial task decoding approach.

2012

Delis, Ioannis | Berret, Bastien | Pozzo, Thierry | Panzeri, Stefano; International audience; ''Muscle synergies, i.e., invariant coordinated activations of groups of muscles, have been proposed as building blocks that the central nervous system (CNS) uses to construct the patterns of muscle activity utilized for executing movements . Several efficient dimensionality reduction algorithms that extract putative synergies from electromyographic (EMG) signals have been developed. Typically, the quality of synergy decompositions is assessed by computing the Variance Accounted For (VAF). Yet, little is known about the extent to which the combination of those synergies en codes task discriminating…

Computer scienceNeuroscience (miscellaneous)ORGANIZATIONMachine learningcomputer.software_genrelcsh:RC321-571Matrix decompositionNATURAL MOTOR BEHAVIORSFORCE03 medical and health sciencesCellular and Molecular NeurosciencePRIMITIVES0302 clinical medicinetask decodingmuscle synergiesMODULAR CONTROLMATRIX FACTORIZATIONOriginal Research ArticleMuscle activityInvariant (mathematics)Muscle synergylcsh:Neurosciences. Biological psychiatry. Neuropsychiatry030304 developmental biologyARM MOVEMENTS0303 health sciencessingle-trial analysisarm movementbusiness.industryDimensionality reduction[SCCO.NEUR]Cognitive science/NeurosciencereachingTIME-VARYING SYNERGIES[ SCCO.NEUR ] Cognitive science/NeurosciencePATTERNS''NATURAL MOTOR BEHAVIORSArtificial intelligenceFORCE''Single trialSPINAL-CORDbusinesscomputer030217 neurology & neurosurgeryDecoding methodsNeuroscienceFrontiers in computational neuroscience
researchProduct

''Investigating reduction of dimensionality during single-joint elbow movements: a case study on muscle synergies''

2013

Chiovetto, Enrico | Berret, Bastien | Delis, Ioannis | Panzeri, Stefano | Pozzo, Thierry; International audience; ''A long standing hypothesis in the neuroscience community is that the central nervous system (CNS) generates the muscle activities to accomplish movements by combining a relatively small number of stereotyped patterns of muscle activations, often referred to as" muscle synergies." Different definitions of synergies have been given in the literature. The most well-known are those of synchronous, time-varying and temporal muscle synergies. Each one of them is based on a different mathematical model used to factor some EMG array recordings collected during the execution of variety…

Computer scienceNeuroscience (miscellaneous)triphasic patternADJUSTMENTS''Variation (game tree)ORGANIZATIONTemporal musclelcsh:RC321-571NATURAL MOTOR BEHAVIORSnon-negative matrix factorizationACTIVATION03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineEMGEncoding (memory)muscle synergiesMATRIX FACTORIZATIONFeature (machine learning)Original Research ArticleSet (psychology)lcsh:Neurosciences. Biological psychiatry. Neuropsychiatry030304 developmental biologydimensionality reductionARM MOVEMENTSELECTROMYOGRAPHIC PATTERNS0303 health sciencesbusiness.industryDimensionality reductionCOMBINATIONS[SCCO.NEUR]Cognitive science/Neuroscienceelbow rotationsNeurophysiologyADJUSTMENTSBODY POINTING MOVEMENTS[ SCCO.NEUR ] Cognitive science/Neuroscience''NATURAL MOTOR BEHAVIORSArtificial intelligencebusiness030217 neurology & neurosurgeryCognitive psychologyCurse of dimensionalityNeuroscienceTRIPHASIC EMG PATTERN
researchProduct

Emulation of 2D Hydrodynamic Flood Simulations at Catchment Scale Using ANN and SVR

2021

Two-dimensional (2D) hydrodynamic models are one of the most widely used tools for flood modeling practices and risk estimation. The 2D models provide accurate results

Computer scienceProcess (engineering)Geography Planning and DevelopmentAquatic ScienceMachine learningcomputer.software_genreBiochemistrysupport vector regressionTD201-500Uncertainty analysisWater Science and TechnologyEmulationArtificial neural networkFlood mythWater supply for domestic and industrial purposesbusiness.industryDimensionality reductionHydraulic engineeringSupport vector machineemulatorsVDP::Teknologi: 500Sample size determinationerror structureArtificial intelligencetraining set sizebusinessTC1-978computerartificial neural networkWater
researchProduct

Texture Classification with Generalized Fourier Descriptors in Dimensionality Reduction Context: An Overview Exploration

2008

In the context of texture classification, this article explores the capacity and the performance of some combinations of feature extraction, linear and nonlinear dimensionality reduction techniques and several kinds of classification methods. The performances are evaluated and compared in term of classification error. In order to test our texture classification protocol, the experiment carried out images from two different sources, the well known Brodatz database and our leaf texture images database.

Computer sciencebusiness.industryDimensionality reductionFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONNonlinear dimensionality reductionPattern recognitionContext (language use)Texture (geology)Term (time)symbols.namesakeFourier transformsymbolsArtificial intelligencebusiness
researchProduct

Local Feature Selection with Dynamic Integration of Classifiers

2000

Multidimensional data is often feature space heterogeneous so that individual features have unequal importance in different sub areas of the feature space. This motivates to search for a technique that provides a strategic splitting of the instance space being able to identify the best subset of features for each instance to be classified. Our technique applies the wrapper approach where a classification algorithm is used as an evaluation function to differentiate between different feature subsets. In order to make the feature selection local, we apply the recent technique for dynamic integration of classifiers. This allows to determine which classifier and which feature subset should be us…

Computer sciencebusiness.industryDimensionality reductionFeature vectorDecision treeFeature selectionPattern recognitionEvaluation functionMachine learningcomputer.software_genreFeature modelk-nearest neighbors algorithmMinimum redundancy feature selectionArtificial intelligencebusinesscomputer
researchProduct

Reduction of the number of spectral bands in Landsat images: a comparison of linear and nonlinear methods

2006

We describe some applications of linear and nonlinear pro- jection methods in order to reduce the number of spectral bands in Land- sat multispectral images. The nonlinear method is curvilinear component analysis CCA, and we propose an adapted optimization of it for image processing, based on the use of principal-component analysis PCA, a linear method. The principle of CCA consists in reproducing the topol- ogy of the original space projection points in a reduced subspace, keep- ing the maximum of information. Our conclusions are: CCA is an im- provement for dimension reduction of multispectral images; CCA is really a nonlinear extension of PCA; CCA optimization through PCA called CCAinitP…

Computer sciencebusiness.industryDimensionality reductionQuantization (signal processing)Multispectral imageGeneral EngineeringImage processingPattern recognitionImage segmentationSpectral bandsNonlinear Sciences::Cellular Automata and Lattice GasesAtomic and Molecular Physics and OpticsStatistics::Machine LearningComputer Science::Computer Vision and Pattern RecognitionPrincipal component analysisComputer visionArtificial intelligenceProjection (set theory)businessSubspace topologyOptical Engineering
researchProduct

Automatic Image Annotation Using Random Projection in a Conceptual Space Induced from Data

2018

The main drawback of a detailed representation of visual content, whatever is its origin, is that significant features are very high dimensional. To keep the problem tractable while preserving the semantic content, a dimen- sionality reduction of the data is needed. We propose the Random Projection techniques to reduce the dimensionality. Even though this technique is sub-optimal with respect to Singular Value Decomposition its much lower computational cost make it more suitable for this problem and in par- ticular when computational resources are limited such as in mobile terminals. In this paper we present the use of a "conceptual" space, automatically induced from data, to perform automa…

Computer sciencebusiness.industryDimensionality reductionRandom projectionFeature extractionRANDOM MAPPINGPattern recognition02 engineering and technology010501 environmental sciencesConceptual-space01 natural sciencesVisualizationAutomatic image annotationRandom-projectionHistogramSingular value decomposition0202 electrical engineering electronic engineering information engineeringImage-semantic020201 artificial intelligence & image processingArtificial intelligenceIMAGE ANNOTATIONbusinessCONCEPTUAL SPACE0105 earth and related environmental sciencesCurse of dimensionality
researchProduct

Manifold Learning with High Dimensional Model Representations

2020

Manifold learning methods are very efficient methods for hyperspectral image (HSI) analysis but, unless specifically designed, they cannot provide an explicit embedding map readily applicable to out-of-sample data. A common assumption to deal with the problem is that the transformation between the high input dimensional space and the (typically low) latent space is linear. This is a particularly strong assumption, especially when dealing with hyperspectral images due to the well-known nonlinear nature of the data. To address this problem, a manifold learning method based on High Dimensional Model Representation (HDMR) is proposed, which enables to present a nonlinear embedding function to p…

Computer sciencebusiness.industryNonlinear dimensionality reductionHyperspectral imaging020206 networking & telecommunicationsPattern recognition02 engineering and technologyFunction (mathematics)ManifoldNonlinear systemKernel (linear algebra)Transformation (function)0202 electrical engineering electronic engineering information engineeringEmbedding020201 artificial intelligence & image processingArtificial intelligencebusinessIGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Dimension Estimation in Two-Dimensional PCA

2021

We propose an automated way of determining the optimal number of low-rank components in dimension reduction of image data. The method is based on the combination of two-dimensional principal component analysis and an augmentation estimator proposed recently in the literature. Intuitively, the main idea is to combine a scree plot with information extracted from the eigenvectors of a variation matrix. Simulation studies show that the method provides accurate estimates and a demonstration with a finger data set showcases its performance in practice. peerReviewed

Computer sciencebusiness.industrydimension reductionDimensionality reductionimage dataEstimatorPattern recognitiondimension estimation16. Peace & justiceImage (mathematics)Data modelingData setMatrix (mathematics)scree plotPrincipal component analysisaugmentationArtificial intelligencebusinessEigenvalues and eigenvectors
researchProduct