Search results for "Dimensionality Reduction"
showing 10 items of 120 documents
Feature Dimensionality Reduction for Mammographic Report Classification
2016
The amount and the variety of available medical data coming from multiple and heterogeneous sources can inhibit analysis, manual interpretation, and use of simple data management applications. In this paper a deep overview of the principal algorithms for dimensionality reduction is carried out; moreover, the most effective techniques are applied on a dataset composed of 4461 mammographic reports is presented. The most useful medical terms are converted and represented using a TF-IDF matrix, in order to enable data mining and retrieval tasks. A series of query have been performed on the raw matrix and on the same matrix after the dimensionality reduction obtained using the most useful techni…
Quantitative evaluation of muscle synergy models: a single-trial task decoding approach.
2012
Delis, Ioannis | Berret, Bastien | Pozzo, Thierry | Panzeri, Stefano; International audience; ''Muscle synergies, i.e., invariant coordinated activations of groups of muscles, have been proposed as building blocks that the central nervous system (CNS) uses to construct the patterns of muscle activity utilized for executing movements . Several efficient dimensionality reduction algorithms that extract putative synergies from electromyographic (EMG) signals have been developed. Typically, the quality of synergy decompositions is assessed by computing the Variance Accounted For (VAF). Yet, little is known about the extent to which the combination of those synergies en codes task discriminating…
''Investigating reduction of dimensionality during single-joint elbow movements: a case study on muscle synergies''
2013
Chiovetto, Enrico | Berret, Bastien | Delis, Ioannis | Panzeri, Stefano | Pozzo, Thierry; International audience; ''A long standing hypothesis in the neuroscience community is that the central nervous system (CNS) generates the muscle activities to accomplish movements by combining a relatively small number of stereotyped patterns of muscle activations, often referred to as" muscle synergies." Different definitions of synergies have been given in the literature. The most well-known are those of synchronous, time-varying and temporal muscle synergies. Each one of them is based on a different mathematical model used to factor some EMG array recordings collected during the execution of variety…
Emulation of 2D Hydrodynamic Flood Simulations at Catchment Scale Using ANN and SVR
2021
Two-dimensional (2D) hydrodynamic models are one of the most widely used tools for flood modeling practices and risk estimation. The 2D models provide accurate results
Texture Classification with Generalized Fourier Descriptors in Dimensionality Reduction Context: An Overview Exploration
2008
In the context of texture classification, this article explores the capacity and the performance of some combinations of feature extraction, linear and nonlinear dimensionality reduction techniques and several kinds of classification methods. The performances are evaluated and compared in term of classification error. In order to test our texture classification protocol, the experiment carried out images from two different sources, the well known Brodatz database and our leaf texture images database.
Local Feature Selection with Dynamic Integration of Classifiers
2000
Multidimensional data is often feature space heterogeneous so that individual features have unequal importance in different sub areas of the feature space. This motivates to search for a technique that provides a strategic splitting of the instance space being able to identify the best subset of features for each instance to be classified. Our technique applies the wrapper approach where a classification algorithm is used as an evaluation function to differentiate between different feature subsets. In order to make the feature selection local, we apply the recent technique for dynamic integration of classifiers. This allows to determine which classifier and which feature subset should be us…
Reduction of the number of spectral bands in Landsat images: a comparison of linear and nonlinear methods
2006
We describe some applications of linear and nonlinear pro- jection methods in order to reduce the number of spectral bands in Land- sat multispectral images. The nonlinear method is curvilinear component analysis CCA, and we propose an adapted optimization of it for image processing, based on the use of principal-component analysis PCA, a linear method. The principle of CCA consists in reproducing the topol- ogy of the original space projection points in a reduced subspace, keep- ing the maximum of information. Our conclusions are: CCA is an im- provement for dimension reduction of multispectral images; CCA is really a nonlinear extension of PCA; CCA optimization through PCA called CCAinitP…
Automatic Image Annotation Using Random Projection in a Conceptual Space Induced from Data
2018
The main drawback of a detailed representation of visual content, whatever is its origin, is that significant features are very high dimensional. To keep the problem tractable while preserving the semantic content, a dimen- sionality reduction of the data is needed. We propose the Random Projection techniques to reduce the dimensionality. Even though this technique is sub-optimal with respect to Singular Value Decomposition its much lower computational cost make it more suitable for this problem and in par- ticular when computational resources are limited such as in mobile terminals. In this paper we present the use of a "conceptual" space, automatically induced from data, to perform automa…
Manifold Learning with High Dimensional Model Representations
2020
Manifold learning methods are very efficient methods for hyperspectral image (HSI) analysis but, unless specifically designed, they cannot provide an explicit embedding map readily applicable to out-of-sample data. A common assumption to deal with the problem is that the transformation between the high input dimensional space and the (typically low) latent space is linear. This is a particularly strong assumption, especially when dealing with hyperspectral images due to the well-known nonlinear nature of the data. To address this problem, a manifold learning method based on High Dimensional Model Representation (HDMR) is proposed, which enables to present a nonlinear embedding function to p…
Dimension Estimation in Two-Dimensional PCA
2021
We propose an automated way of determining the optimal number of low-rank components in dimension reduction of image data. The method is based on the combination of two-dimensional principal component analysis and an augmentation estimator proposed recently in the literature. Intuitively, the main idea is to combine a scree plot with information extracted from the eigenvectors of a variation matrix. Simulation studies show that the method provides accurate estimates and a demonstration with a finger data set showcases its performance in practice. peerReviewed