Search results for "Disordered system"
showing 10 items of 244 documents
Multitasking associative networks.
2012
We introduce a bipartite, diluted and frustrated, network as a sparse restricted Boltzman machine and we show its thermodynamical equivalence to an associative working memory able to retrieve multiple patterns in parallel without falling into spurious states typical of classical neural networks. We focus on systems processing in parallel a finite (up to logarithmic growth in the volume) amount of patterns, mirroring the low-level storage of standard Amit-Gutfreund-Sompolinsky theory. Results obtained trough statistical mechanics, signal-to-noise technique and Monte Carlo simulations are overall in perfect agreement and carry interesting biological insights. Indeed, these associative network…
Role of noise in a market model with stochastic volatility
2006
We study a generalization of the Heston model, which consists of two coupled stochastic differential equations, one for the stock price and the other one for the volatility. We consider a cubic nonlinearity in the first equation and a correlation between the two Wiener processes, which model the two white noise sources. This model can be useful to describe the market dynamics characterized by different regimes corresponding to normal and extreme days. We analyze the effect of the noise on the statistical properties of the escape time with reference to the noise enhanced stability (NES) phenomenon, that is the noise induced enhancement of the lifetime of a metastable state. We observe NES ef…
Percolation and Schramm–Loewner evolution in the 2D random-field Ising model
2011
Abstract The presence of random fields is well known to destroy ferromagnetic order in Ising systems in two dimensions. When the system is placed in a sufficiently strong external field, however, the size of clusters of like spins diverges. There is evidence that this percolation transition is in the universality class of standard site percolation. It has been claimed that, for small disorder, a similar percolation phenomenon also occurs in zero external field. Using exact algorithms, we study ground states of large samples and find little evidence for a transition at zero external field. Nevertheless, for sufficiently small random-field strengths, there is an extended region of the phase d…
Critical and tricritical singularities of the three-dimensional random-bond Potts model for large $q$
2005
We study the effect of varying strength, $\delta$, of bond randomness on the phase transition of the three-dimensional Potts model for large $q$. The cooperative behavior of the system is determined by large correlated domains in which the spins points into the same direction. These domains have a finite extent in the disordered phase. In the ordered phase there is a percolating cluster of correlated spins. For a sufficiently large disorder $\delta>\delta_t$ this percolating cluster coexists with a percolating cluster of non-correlated spins. Such a co-existence is only possible in more than two dimensions. We argue and check numerically that $\delta_t$ is the tricritical disorder, which se…
Dielectric polarization in PLZT X/65/35 and PbMg1/3Nb2/3O3at the diffuse phase transition
1992
Abstract The transformation of the hysteresis loops in PLZT x/65/35 in the region of diffuse phase transition is discussed in relation to the behaviour of dielectric permittivity. The Vogel-Fulcher type dielectric relaxation is used to describe the discussed phenomena.
Computer simulation of models for orientational glasses
1991
Abstract Monte Carlo studies of two- and three-dimensional lattice models where quadrupoles interact with a nearest-neighbor Gaussian coupling are reviewed. None of these models has a thermodynamic glass phase transition at non-zero temperature like the Ising spin glass: rather, phase transitions at zero temperature occur that exhibit a dynamical freeze-in spread out over a wide temperature range and are characterized by a strongly non-exponential relaxation. The time-dependent glass order parameter, q(t), decays with time, t, compatible with a stretched exponential decay q(t) ∼ exp [− (t/τ)y] with a strongly temperature-dependent exponent. While the static glass ‘susceptibility’ for isotro…
Intervalley-scattering-induced electron-phonon energy relaxation in many-valley semiconductors at low temperatures
2005
We report on the effect of elastic intervalley scattering on the energy transport between electrons and phonons in many-valley semiconductors. We derive a general expression for the electron-phonon energy flow rate at the limit where elastic intervalley scattering dominates over diffusion. Electron heating experiments on heavily doped n-type Si samples with electron concentration in the range $3.5-16.0\times 10^{25}$ m$^{-3}$ are performed at sub-1 K temperatures. We find a good agreement between the theory and the experiment.
Conformational disorder and optical properties of point defects in vitreous silica
2004
Abstract Disordered systems are characterized by the presence of local conformational heterogeneity, which reflects the complex landscape of the potential energy of the vitreous state. Optical properties of defects embedded in a vitreous matrix are also determined by the interaction with the surrounding environment; so the conformational disorder of the system induces spectral inhomogeneity. As a consequence, detailed experimental investigation of absorption and photoluminescence bands can give information on configurational substates around the chromophore. We focused our attention on B-type optical activity in silica glasses, characterized by a singlet emission and a triplet emission, conne…
Isoelectronic series of oxygen deficient centers in silica: experimental estimation of homogeneous and inhomogeneous spectral widths
2008
We report nanosecond time-resolved photoluminescence measurements on the isoelectronic series of oxygen deficient centers in amorphous silica related to silicon, germanium and tin atoms, which are responsible of fluorescence activities at approximately 4 eV under excitation at approximately 5 eV. The dependence of the first moment of their emission band on time and that of the radiative decay lifetime on emission energy are analyzed within a theoretical model able to describe the effects introduced by disorder on the optical properties of the defects. We obtain separate estimates of the homogeneous and inhomogeneous contributions to the measured emission line width, and we derive homogeneou…
Homogeneous and inhomogeneous contributions to the luminescence linewidth of point defects in amorphous solids: Quantitative assessment based on time…
2008
The article describes an experimental method that allows to estimate the inhomogeneous and homogeneous linewidths of the photoluminescence band of a point defect in an amorphous solid. We performed low temperature time-resolved luminescence measurements on two defects chosen as model systems for our analysis: extrinsic Oxygen Deficient Centers (ODC(II)) in amorphous silica and F+ 3 centers in crystalline Lithium Fluoride. Measurements evidence that only defects embedded in the amorphous matrix feature a dependence of the radiative decay lifetime on the emission energy and a time dependence of the first moment of the emission band. A theoretical model is developed to link these properties to…