Search results for "Disordered system"

showing 10 items of 244 documents

Analytical representations for relaxation functions of glasses

2002

Analytical representations in the time and frequency domains are derived for the most frequently used phenomenological fit functions for non-Debye relaxation processes. In the time domain the relaxation functions corresponding to the complex frequency dependent Cole-Cole, Cole-Davidson and Havriliak-Negami susceptibilities are also represented in terms of $H$-functions. In the frequency domain the complex frequency dependent susceptibility function corresponding to the time dependent stretched exponential relaxation function is given in terms of $H$-functions. The new representations are useful for fitting to experiment.

PhysicsCondensed Matter - Materials ScienceMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesFunction (mathematics)Disordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsExponential functionFrequency domainMaterials ChemistryCeramics and CompositesRelaxation (physics)Time domainStatistical physicsSusceptibility function
researchProduct

Lattice Boltzmann versus Molecular Dynamics simulations of nanoscale hydrodynamic flows

2006

A fluid flow in a simple dense liquid, passing an obstacle in a two-dimensional thin film geometry, is simulated by Molecular Dynamics (MD) computer simulation and compared to results of Lattice Boltzmann (LB) simulations. By the appropriate mapping of length and time units from LB to MD, the velocity field as obtained from MD is quantitatively reproduced by LB. The implications of this finding for prospective LB-MD multiscale applications are discussed.

PhysicsCondensed Matter - Materials ScienceNanostructureLattice Boltzmann methodsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyDisordered Systems and Neural Networks (cond-mat.dis-nn)MechanicsCondensed Matter - Disordered Systems and Neural NetworksNanostructuresMolecular dynamicsModels ChemicalFluid dynamicsThermodynamicsComputer SimulationVector fieldStatistical physicsThin filmNanoscopic scale
researchProduct

Antiferromagnetic Heisenberg chains with bond alternation and quenched disorder

2004

We consider S=1/2 antiferromagnetic Heisenberg chains with alternating bonds and quenched disorder, which represents a theoretical model of the compound CuCl_{2x}Br_{2(1-x)}(\gamma-{pic})_2. Using a numerical implementation of the strong disorder renormalization group method we study the low-energy properties of the system as a function of the concentration, x, and the type of correlations in the disorder. For perfect correlation of disorder the system is in the random dimer (Griffiths) phase having a concentration dependent dynamical exponent. For weak or vanishing disorder correlations the system is in the random singlet phase, in which the dynamical exponent is formally infinity. We disc…

PhysicsCondensed matter physicsDimerGeneral Physics and AstronomyFOS: Physical sciencesFunction (mathematics)Disordered Systems and Neural Networks (cond-mat.dis-nn)Type (model theory)Renormalization groupCondensed Matter - Disordered Systems and Neural NetworksCondensed Matter::Disordered Systems and Neural Networkschemistry.chemical_compoundchemistryPhase (matter)ExponentAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsSinglet state
researchProduct

Transitions between metastable states in silica clusters

1999

Relaxation phenomena in glasses can be related to jump processes between different minima of the potential energy in the configuration space. These transitions play a key role in the low temperature regime, giving rise to tunneling systems responsible for the anomalous specific heat and thermal conductivity in disordered solids with respect to crystals. By using a recently developed numerical algorithm, we study the potential energy landscape of silica clusters, taking as a starting point the location of first order saddle points. This allows us to find a great number of adjacent minima. We analyze the degree of cooperativity of these transitions and the connection of physical properties wi…

PhysicsCondensed matter physicsGeneral Chemical EngineeringGeneral Physics and AstronomyFOS: Physical sciencesDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksPotential energyWKB approximationMaxima and minimaSaddle pointMetastabilityConfiguration spaceGround stateQuantum tunnelling
researchProduct

Dynamical heterogeneities in a supercooled Lennard-Jones liquid

1997

We present the results of a large scale molecular dynamics computer simulation study in which we investigate whether a supercooled Lennard-Jones liquid exhibits dynamical heterogeneities. We evaluate the non-Gaussian parameter for the self part of the van Hove correlation function and use it to identify ``mobile'' particles. We find that these particles form clusters whose size grows with decreasing temperature. We also find that the relaxation time of the mobile particles is significantly shorter than that of the bulk, and that this difference increases with decreasing temperature.

PhysicsCondensed matter physicsMathematical modelGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural Networks021001 nanoscience & nanotechnology01 natural sciencesCalculation methodsMolecular dynamicsCorrelation function (statistical mechanics)Lennard-Jones potential0103 physical sciencesParticleDynamical heterogeneity010306 general physics0210 nano-technologySupercooling
researchProduct

Microscopic dynamics of molecular liquids and glasses: Role of orientations and translation-rotation coupling

2001

We investigate the dynamics of a fluid of dipolar hard spheres in its liquid and glassy phase, with emphasis on the microscopic time or frequency regime. This system shows rather different glass transition scenarios related to its rich equilibrium behavior which ranges from a simple hard sphere fluid to a long range ferroelectric orientational order. In the liquid phase close to the ideal glass transition line and in the glassy regime a medium range orientational order occurs leading to a softening of an orientational mode. To investigate the role of this mode we use the molecular mode-coupling equations to calculate the spectra $\phi_{lm}^{\prime \prime}(q,\omega)$ and $\chi _{lm}''(q,\ome…

PhysicsCondensed matter physicsOrder (ring theory)FOS: Physical sciencesCenter of massIdeal (ring theory)Hard spheresDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksMoment of inertiaCoupling (probability)OmegaSpectral line
researchProduct

Interaction of two-level systems in amorphous materials with arbitrary phonon fields

2006

To describe the interaction of the two level systems (TLSs) of an amorphous solid with arbitrary strain fields, we introduce a generalization of the standard interaction Hamiltonian. In this new model, the interaction strength depends on the orientation of the TLS with respect to the strain field through a $6\times 6$ symmetric tensor of deformation potential parameters, $[R]$. Taking into account the isotropy of the amorphous solid, we deduce that $[R]$ has only two independent parameters. We show how these two parameters can be calculated from experimental data and we prove that for any amorphous bulk material the average coupling of TLSs with longitudinal phonons is always stronger than …

PhysicsCondensed matter physicsPhononIsotropyFOS: Physical sciencesInteraction strengthDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksCondensed Matter PhysicsQuasi particlesElectronic Optical and Magnetic MaterialsAmorphous solidCondensed Matter::Materials Sciencesymbols.namesakeQuantum mechanicssymbolsSymmetric tensorHamiltonian (quantum mechanics)Physical Review B
researchProduct

Testing Mode-Coupling Theory for a Supercooled Binary Lennard-Jones Mixture II: Intermediate Scattering Function and Dynamic Susceptibility

1995

We have performed a molecular dynamics computer simulation of a supercooled binary Lennard-Jones system in order to compare the dynamical behavior of this system with the predictions of the idealized version of mode-coupling theory (MCT). By scaling the time $t$ by the temperature dependent $\alpha$-relaxation time $\tau(T)$, we find that in the $\alpha$-relaxation regime $F(q,t)$ and $F_s(q,t)$, the coherent and incoherent intermediate scattering functions, for different temperatures each follows a $q$-dependent master curve as a function of scaled time. We show that during the early part of the $\alpha$-relaxation, which is equivalent to the late part of the $\beta$-relaxation, these mast…

PhysicsCondensed matter physicsScatteringCondensed Matter (cond-mat)FOS: Physical sciencesCondensed MatterFick's laws of diffusionOmegaPower lawCondensed Matter::Disordered Systems and Neural NetworksUniversality (dynamical systems)ExponentScalingCritical exponentMathematical physics
researchProduct

Cooperative motion and growing length scales in supercooled confined liquids

2002

Using molecular dynamics simulations we investigate the relaxation dynamics of a supercooled liquid close to a rough as well as close to a smooth wall. For the former situation the relaxation times increase strongly with decreasing distance from the wall whereas in the second case they strongly decrease. We use this dependence to extract various dynamical length scales and show that they grow with decreasing temperature. By calculating the frequency dependent average susceptibility of such confined systems we show that the experimental interpretation of such data is very difficult.

PhysicsCondensed matter physicsStatistical Mechanics (cond-mat.stat-mech)Dynamics (mechanics)General Physics and AstronomyMotion (geometry)FOS: Physical sciences02 engineering and technologyDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural Networks021001 nanoscience & nanotechnology01 natural sciencesInterpretation (model theory)Molecular dynamics[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]0103 physical sciencesRelaxation (physics)010306 general physics0210 nano-technologySupercoolingCondensed Matter - Statistical Mechanics
researchProduct

Fluctuation dissipation ratio in an aging Lennard-Jones glass

1998

By using extensive Molecular Dynamics simulations, we have determined the violation of the fluctuation-dissipation theorem in a Lennard-Jones liquid quenched to low temperatures. For this we have calculated $X(C)$, the ratio between a one particle time-correlation function $C$ and the associated response function. Our results are best fitted by assuming that $X(C)$ is a discontinuous, piecewise constant function. This is similar to what is found in spin systems with one step replica symmetry breaking. This strengthen the conjecture of a similarity between the phase space structure of structural glasses and such spin systems.

PhysicsCondensed matter physicsStatistical Mechanics (cond-mat.stat-mech)General Physics and AstronomyFOS: Physical sciencesFunction (mathematics)Disordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksDissipationMolecular dynamicsPhase spacePiecewiseConstant functionSymmetry breakingCondensed Matter - Statistical MechanicsSpin-½
researchProduct